Under consideration for publication in Math. Struct. in Comp. Science

A Rewriting Framework and Logic for Activities
Subject to Regulations

MAX KANOVICH!"26 TAJANA BAN KIRIGIN® VIVEK NIGAM?,
ANDRE SCEDROV®%% CAROLYN TALCOTT? and RANKO PEROVICS T

1 University College London, UCL-CS, UK, Email: m.kanovich@ucl.ac.uk

2 Queen Mary, University of London, UK, Email: mik@dcs.qmul.ac.uk

3 University of Rijeka, HR, Email: bank@math.uniri.hr

4 Federal University of Paraiba, Brazil, Email: vivek.nigam@ gmail.com

® University of Pennsylvania, USA, Email: scedrov@math.upenn.edu

S National Research University Higher School of Economics, Moscow, Russia
" SRI International, USA. E-mail: clt@csl.sri.com

8 Clinical Research Manager, USA. Email: perovicrankomd @ gmail.com

Received 29 November 2013; Revised 28 February 2015

Activities such as clinical investigations or financial processes are subject to regulations to ensure
quality of results and avoid negative consequences. Regulations may be imposed by multiple
governmental agencies as well as by institutional policies and protocols. Due to the complexity of
both regulations and activities there is great potential for violation due to human error,
misunderstanding, or even intent. Executable formal models of regulations, protocols, and activities
can form the foundation for automated assistants to aid planning, monitoring, and compliance
checking. We propose a model based on multiset rewriting where time is discrete and is specified by
timestamps attached to facts. Actions, as well as initial, goal and critical states may be constrained by
means of relative time constraints. Moreover, actions may have non-deterministic effects, i.e., they
may have different outcomes whenever applied. We present a formal semantics of our model based on
focused proofs of linear logic with definitions. We also determine the computational complexity of
various planning problems. Plan compliance problem, for example, is the problem of finding a plan
that leads from an initial state to a desired goal state without reaching any undesired critical state. We
consider all actions to be balanced, i.e., their pre and post-conditions have the same number of facts.
Under this assumption on actions, we show that the plan compliance problem is PSPACE-complete
when all actions have only deterministic effects and is EXPTIME-complete when actions may have
non-deterministic effects. Finally, we show that the restrictions on the form of actions and time
constraints taken in the specification of our model are necessary for decidability of the planning
problems.

T This material is based upon work supported by the MURI program under AFOSR Grant No: FA9550-08-1-0352 and
upon work supported by the AFOSR MURI “Science of Cyber Security: Modeling, Composition, and Measurement”.
Additional support for Scedrov from NSF Grant CNS-0830949 and from ONR grant N00014-11-1-0555. Nigam was
partially supported by the Alexander von Humboldt Foundation and CNPq. Kanovich was partially supported by the
EPSRC.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
28 FEB 2015 2. REPORT TYPE 00-00-2015 to 00-00-2015
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Rewriting Framework and L ogic for Activities Subject to Regulations | . -, NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Pennsylvania,Department of REPORT NUMBER
M athematics,Philadelphia,PA,19104

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 41
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 2

1. Introduction

Regulations are commonly used to set the rules of conduct of numerous activities in order to
ensure quality of results and avoid negative consequences. For example, while carrying out a
clinical investigation (CI)—that is, a set of procedures in medical research and drug development,
to test a new drug or other intervention on human subjects, it is important that conclusive data is
collected and that the health of the subjects participating in the CI is not compromised. In order to
collect the most conclusive data, for instance, drug samples have to be taken and all the necessary
tests have to be carried out in well defined periods of time. Moreover, since these experiments
might compromise the health of subjects, Cls are rigorously regulated by policies elaborated
by governmental agencies such as the Food and Drug Administration (FDA) (FDA99). These
regulations require prompt action whenever a serious and unexpected problem with any subject is
reported. In the current state of affairs, there is little to almost no automation in the management
of CIs and therefore the process is prone to human error. As described in (NBS+12), there is
plenty of room for the use of automated assistants to help reduce human mistakes from happening.
For instance, a computer assistant can automatically generate plans that guide the clinical staff
on how a CI has to be carried out. An assistant can also monitor the execution of a CI and signal
alarms whenever a deviation to the specification is detected.

This paper proposes a rewriting framework that can be used to specify collaborative systems,
such as Cls, and can be used as the foundation for building automated assistants. Our model is
an extension of the systems used for modeling collaborative systems proposed in (KRS11) with
explicit time. An important feature of our model is that its specifications can be directly written
and executed in Maude (CDE+07), a powerful tool based on rewrite logic (JM92). For more
details see (NBS+12) where we address implementation.

A second feature of our framework is that its specifications can mention time explicitly. Time is
often a key component used in policies specifying the rules and the requirements of a collaboration.
For a correct collaboration and to achieve a common goal, participants should usually follow
strict deadlines and should have quick reactions to some (unexpected) events. For instance, the
paragraph 312.32 on Investigational New Drug Application (IND) safety (FDA99) includes
explicit time intervals that must be followed in case of any unexpected, serious or life-threatening
adverse drug experience: (The emphasis in the text below is ours.)

“(c) IND safety reports

(1) Written reports —(i) The sponsor shall notify FDA and all participating investigators in a written IND
safety report of: (A) Any adverse experience associated with the use of the drug that is both serious and
unexpected; [- - -] Each notification shall be made as soon as possible and in no event later than 15 calendar
days after the sponsor’s initial receipt of the information [- - -]

(2) Telephone and facsimile transmission safety reports. The sponsor shall also notify FDA by telephone
or by facsimile transmission of any unexpected fatal or life-threatening experience associated with the use of
the drug as soon as possible but in no event later than 7 calendar days after the sponsor’s initial receipt of
the information.”

The above clauses explicitly mention two different time intervals. The first one specifies that a
detailed safety report must be sent to the FDA within 15 days after a serious and unexpected event
is detected, while the second specifies the obligation of notifying FDA of such an event within 7
days.

A Rewriting Framework and Logic for Activities Subject to Regulations 3

In order to accommodate explicit time, we attach to facts a natural number called a timestamp.
Timestamps can be used in different ways depending on the system being modeled. In the example
above, the timestamp ¢ of the fact Dose(id)@t could denote that the subject with anonymous
identification number id received a dose at time ¢. Alternatively, the timestamp, ¢,, of the fact
Deadline@ts could denote the time of when some activity should end. Moreover, we keep track
of time by assuming a discrete global time, using the special fact Time@t that denotes that the
current time is ¢. The global time advances by replacing Time@Qt by TimeQ(¢ + 1).

Agents change the state of the system by performing actions which are given as rewrite rules.
In order to specify the type of time requirements illustrated above, a set of time constraints may
be attached to actions. This set acts as a guard of the action, i.e. the action can only be applied if
its time constraints are satisfied. Formally, a time constraint is a comparison involving exactly two
timestamps, e.g. , 171 < T» + 7 (see Eq. 1).

Besides allowing guards with time constraints, we also allow actions to have non-deterministic
effects. In particular, actions are allowed to have a finite number of post-conditions specifying a
finite number of possible resulting states. These actions are useful when specifying systems, such
as CIs, containing actions that may lead to different outcomes, but it is not certain beforehand
which one of the outcomes will actually occur. For instance, when carrying out a blood test for the
presence of some substance, it is not a priori clear what the test result will be. Nevertheless, one
can classify any result as either positive or negative. Depending on this result, one would need to
take a different set of future actions. For example, if the blood test is positive, then one might not
be suitable for participating as a subject in a particular CI, but may be suitable for other CIs. We
classify actions that have more than one outcome as branching actions.

Finally, in collaborative systems agents collaborate in order to achieve a common goal, but they
should also avoid critical states that, for example, violate policies. An example of a goal state
for CIs would be to collect conclusive data without compromising the health of subjects, while a
critical state would be a state that violates the FDA policies. In our model, critical, goal and initial
states can also mention time explicitly by using time constraints.

This paper’s contributions are the following:

— Timed local state transition systems are specified in order to formalize systems with explicit
time. This specification takes necessary restrictions on the type of actions and time constraints
so that explicit time requirements are expressible in the system, but at the same time it is
precise with respect to complexity results of the associated planning problems so that we
provide decidability.

— We determine the complexity of the plan compliance problem (KRS11), that is, the problem
of determining whether there is a plan where the collaboration achieves the common goal and
in the process no critical state is reached. It has been shown that the plan compliance problem
is undecidable in general (KRS09). However, we get decidability in the important case when
all actions are balanced, i.e., pre and post-conditions of actions have the same number of
facts. Intuitively, this restriction bounds the memory of agents, as they can remember at any
point only a bounded number of facts. Additionally, we assume that the facts created by an
action, that is, the new facts that appear in its post-condition, can only have timestamps of
the form 7" + d, where T’ is the current global time and d a natural number. Under these two
assumptions on actions, we show that (1) the plan compliance problem is PSPACE-complete

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 4

if no branching actions are allowed and (2) is EXPTIME-complete if branching actions are
allowed. We also investigate the complexity of the reachability problem and the timed system
compliance problems.

— We present a formal semantics of our model based on logic, namely, on linear logic with
definitions (PSH93; BM07; DB08). In particular, we provide an encoding and prove that there
is a one-to-one correspondence between the plans and the (cut-free) focused proofs (JMA92)
of its encoding.

Regarding the first contribution described above, even in the case of balanced actions, we have
to deal with the problem that a plan can generate timestamps 7' of unbounded numeric values. In
particular, the state space is internally infinite since an arbitrary number of time advances can
occur (as illustrated at the beginning of Section 4). In our previous work (KBNS10) we were able
to solve a similar unboundedness problem caused by the presence of freshly created objects that
are called nonces in protocol security literature. However, the solution proposed in (KBNS10)
is not applicable to the problem of unboundedness of time. As a result, in this paper we have
made special precautions in our choice of a novel equivalence relation among states based on
the time differences of the timestamps of facts. This allows us to cover all plans of unbounded
length caused by uncontrolled time advances, with providing our upper bounds for the timed
collaborative systems (Theorem 4.1). We also show that our new technique introduced in this
paper can be combined with the technique introduced in (KBNS10) to solve the unboundedness
for both time and nonces in timed systems. In our experiments, we used this novel equivalence
relation among states.

The paper is organized as follows. Section 2 introduces the formal model for timed collaborative
systems called Timed Local State Transition Systems (TLSTS) as well as the plan compliance
problem described above. (In (NBS+12), TLSTSes were only mentioned, but not formally
introduced.) In Section 3 we give a formal semantics of our model based on focused proofs of linear
logic with definitions. Section 4 introduces an equivalence relation between states of the system
that allows us to handle the unboundedness of time with a finite space. The machinery introduced
in this section is used in Section 5 to demonstrate the decidability of the plan compliance problem.
Section 5 contains the complexity results mentioned above. Section 6 we show that relaxing any
of the main conditions on rules described above leads to the undecidability of the reachability
problem and thus the undecidability of the other compliance problem described above. Finally in
Sections 7 and 8 we discuss related and future work.

This paper extends the conference paper (KBN+12) by providing in Section 3 a linear logic
semantics to our model based on multiset rewriting and time constraints and also by providing full
details for our complexity results for the plan compliance problem. In addition we investigate the
reachability problem and the system compliance problem, which were not dealt in our conference
paper (KBN+12). We also show in Section 6 that the restrictions we impose on the form of actions
and time constraints in our systems are necessary for obtaining the decidability of these problems.
Relaxing any of those restrictions leads to undecidability. These results are also novel with respect
to our previous work (KBN+12).

A Rewriting Framework and Logic for Activities Subject to Regulations 5

2. Basic Definitions

Multiset rewriting models of collaborative systems with privacy and confidentiality have been
introduced in (KRS09; KRS11; KBNS13). These models formalize the collaboration of a group
of agents that work together in order to achieve a common goal. At the same time, confiden-
tiality issues are addressed, such as private and shared information, leakage of private data and
reachability of undesired states.

In this section we review the main concepts and formalize the timed extension of the model.

At the lowest level, we have a first-order alphabet X that consists of a set of predicate sym-
bols Py, Ps, ..., function symbols f1, fo, ..., constant symbols ¢y, ca, . . ., and variable symbols
x1, X2, ... all with specific sorts (or types). The multi-sorted terms over the alphabet are expres-
sions formed by applying functions to arguments of the correct sort. Since terms may contain
variables, all variables must have associated sorts. A fact is a ground, atomic formula over multi-
sorted terms. Facts have the form P(¢1,...,t,) where P is an n-ary predicate symbol, where
t1,...,t, are terms, each with its own sort.

In order to accommodate the dimension of time in our model, we associate to each fact
a timestamp. Timestamped facts are of the form P(ty,...,t,)Qt, where the number ¢ is the
timestamp of the fact P(¢1,...,t,). Among the set of predicates, we distinguish the zero arity
predicate Time, which intuitively denotes the current global time of the system. For instance,
the fact Time @2 denotes that the global time is 2. Here, we assume that timestamps are natural
numbers. The intuitive meaning of a timestamp may depend on the system one is modeling. For
instance, in our clinical investigations example, the timestamp associated to a fact could denote
the time when a problem with a subject has been detected.

The size of a fact, P, denoted by | P|, is the total number of symbols it contains. We count one
for each occurrence of a constant, variable, predicate, and function symbol, e.g. , |P(f(x))| = 3,
and |P(x, ¢, x)| = 4. For our complexity results, we assume an upper bound on the size of facts,
as in (DLMS04; KRS11; KBNS10). This means that for all facts, P(t1,...,t,)Qt, the arity of
predicate symbols, n, and the depth of terms, ¢4, .. .,t,, are bounded. However, we make no
assumptions on the depth of timestamps, ¢, that is, the size of timestamps may be unbounded.

A state, or configuration of the system is a finite multiset, Q1 @t1, . .., Q,Qt,, of grounded
timestamped facts, i.e., timestamped facts not containing variables. Configurations are assumed
to contain exactly one occurrence of the predicate Time. We use W, X to denote the multiset
resulting from the multiset union of W and X. For instance, the configuration

{Time@5, Blood(idy, scheduled)@Q7, Dose(id;)Q4, Status(id; , normal)@Q5}

denotes that that current time is 5, that the blood test for subject identified by id; should be taken
on time 7, that the same subject took a dose of the drug at time 4, and his status is normal, i.e., no
problem has been detected.

For simplicity we often omit the word “timestamped” and just use the wording fact.

In order to specify private and shared information in multiset rewrite systems, and following
(KRS09; KRS11), we assume that the global configuration is partitioned into different local
configurations each of which is accessible only to one agent. There is also a public configuration,
which is accessible to all agents. As argued in (KRS11), this separation allows one to specify
systems for which it is important to know which facts are owned and can be manipulated by an

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 6

agent of the system. Formally, this separation of the global configuration is done by partitioning
the set of predicate symbols in the alphabet and it will be usually clear from the context. The time
predicate Time is assumed to be public. For instance, in the above configuration all facts, except
Time, belong to the health institution monitoring the subject id;.

Time constraints The time requirements of a system are specified by using time constraints.
Time constraints are arithmetic comparisons involving exactly two timestamps:

T1=T2:|:d, T1>T2id,orT12T2j:d, (1)

where d is a natural number and 77 and 75 are time variables, which may be instantiated by the
timestamps of any fact including the global time.

A concrete motivation for time constraints to be relative is that, as in physics, the rules of a
collaboration are also not affected by time shifts. If we shift the timestamps of all facts by the
same value, the same rules and conditions valid with respect to the original state are also valid
with respect to the resulting state. If time constraints were not relative, however, then one would
not be able to establish this important invariant. Indeed, as we show in Section 6, the reachability
problem is undecidable for systems with non-relative time constraints.

2.1. Branching Actions and Plans

Branching Actions Actions work as multiset rewrite rules. Actions are applied to configura-
tions to produce new configurations, hence action application represents a process of changes
of system states. As in (KRS11; KBNS10) we assume that each agent has a finite set of actions.
However, we extend actions in two different ways: First, we add guards to actions; and second we
allow actions to have a finite number of non-deterministic effects.

In their most general form, actions have the following form:

W ‘ Y —a [H.fi.Wﬂ D---D [Hl‘_ﬁWn] 2)

The subscript A is the name of the agent that owns this action. W is the pre-condition of this rule,
while Wy, ..., W, are its post-conditions. All facts in W, W7, ..., W, are public and/or belong
to the agent A. 7" is the guard of the action consisting of finitely many time constraints of the
form shown in Equation 1. We assume that all free variables are universally quantified at the head
of the rule. The existentially quantified variables specify the creation of fresh values, also known
as nonces in protocol security literature.” By applying the rule for a ground substitution (o), the
pre-condition (W o) to which this substitution has been applied is replaced with a post-condition
(W;0) to which the same substitution has been applied. In this process, the existentially quantified
variables (z;) appearing in the post-condition are replaced by fresh constants.

Finally, if n > 1, then we classify the action as branching, otherwise, when n = 1, we classify
the action as non-branching.

T Fresh values are also often used in administrative processes, such as when a transaction number is issued. In particular,
the transaction number has to be fresh. For a more detailed account for fresh values in administrative processes, see
(KBNS13).

A Rewriting Framework and Logic for Activities Subject to Regulations 7

We say that a rule r of the form shown in Equation 2 creates a fact FQT, if FQT does not
appear in its pre-condition W, but appears in at least one of its post-conditions W.

With the exception of Section 6, we only consider in this paper systems with actions of the
form shown in Equation 2. Actions are either the time tick action or atomic actions:

(Time Tick Action) The action formalizing the advancement of time is the following action
belonging to the special agent clock:

TimeQT | {} = ciock Time@Q(T + 1). 3)

The above action does not have any constraints, which is specified by the empty set {}. It is the
only action of the agent clock and is the only action that can change the global time.

(Atomic Actions) The rest of the actions are instantaneous actions belonging to the remaining
agents. We impose the following two conditions on actions depicted in Equation 2. Firstly,
the global time Time@T appears in the pre-condition, W, and in each of the post-conditions
Wy, ..., W, exactly once. Secondly, if Time@QT is in the pre-condition W, then all facts created
by the rule are of the form PQ(T + d), where d is a natural number, possibly zero. That is, all the
facts created by this action have timestamps greater or equal to the global time. Notice that in this
type of action the timestamp of Time does not change, that is, these actions are instantaneous.
Also notice that, for example, the following action is not allowed

TimeQT, RQTy, PQTy | T} < T — 4 TimeQT, RQT,, SQT;.

This is because the timestamp of the created fact S@QT7 is not of the form (7" + d). That is, actions
cannot create facts with arbitrary timestamps, instead they are only allowed to create facts whose
timestamps are in the present or in the future, that is equal to or greater than the current time.

As we discuss in Sections 4 and 6, the two conditions on the actions belonging the agents
different from the clock agent, discussed above, play an important role for the decidability of the
system.

Definition 2.1. A timed local state transition system (TLSTS) T is a tuple (X, I, Ry), where &
is the alphabet of the language, I is a set of agents, such that clock € I, and R is a finite set of
actions owned by the agents in I of the two forms described above.

An TLSTS formalizes a collaborative system in which agents interact in order to achieve some
common goal. Initial configuration is the multiset of facts denoting the initial state of the system,
while the goal configuration is the multiset of facts denoting the final goal. However, since agents
do not trust each other completely, they also want to avoid some critical situations, i.e. situations
that are considered undesired or unacceptable. Therefore, agents may also have confidentiality
policies, given as multisets of facts. Any configuration that conflicts with some confidentiality
policy of any agent of the system is called critical configuration.

Agents change the state of the system by performing actions. We will consider various problems
that involve the transformation of the given initial configuration into a goal configuration, avoiding
critical configurations in the appropriate way.

Branching Plans A branching plan, or simply plan is a tree whose nodes are configurations
and whose edges are labeled with a pair consisting of an action and a number, {«,). As depicted
in Figure 1, a plan is constructed by applying an action to one of its leaves. Formally, consider

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 8

Wio, W’ Wao, W’ . Wio, W' .. W10, W' Woo, W’
\(a,n\(am (i) (a;n=T) (a,m/
N
Wao, W'

Fig. 1. A branching plan obtained by applying an action « of the form shown in Equation 2. Here o is
a ground substitution for a’s pre-condition W, while Wi, ..., W}, o are ground instantiations of a’s
post-conditions.

a branching action « of the form shown in Equation 2, that is, with pre-condition W and post-
condition W1 &- - - W,,. We enumerate the post-conditions as W1, ..., W,,. When such an action
is applied to a leaf of a plan labeled with W7, the corresponding branch of the plan is extended by
adding n leaves. The configuration labeling the i*" leaf is obtained by replacing «’s pre-condition,
W o, instantiated by a ground substitution ¢ in W by the corresponding post-condition of «,
W0, instantiated by the same substitution . The edge connecting W with i*” new leaf is labeled
with («, 7). In the process fresh values are created, replacing the existentially quantified variables,
Ty

For example, let { Time@6, P(t1)@1, Q(t2)@4} be a configuration appearing in a leaf of a
plan P. Then the following branching action is applicable:

Time@T, Q(Y)QT) | {T > Ty + 1} —> 4 [F2. Time@QT, R(Y, 2)QT] & [TimeQT, S(Y)QT]

and it extends the plan P creating the following two leaves {Time@6, P(t1)@Q1, R(t2, 2)Q6}
and {Time@6, P(t1)Q1, S(t2)@Q6}, where z is a fresh value.

If only non-branching actions are used, the plan has a single branch, i.e. the plan is simply a
sequence of actions.

Balanced Actions We classify an action as balanced if its post-conditions, W;, and the
pre-condition, W, have the same number of facts. In Equation 2, this means that the number of
facts in W and W; are the same for all 1 < ¢ < n. We classify a TLSTS as balanced if all its
actions are balanced.

For any plan P obtained from a balanced system, one can easily prove that all configurations
in P have the same number of facts, namely the number of facts in P’s initial configuration.
Intuitively, this means the number of facts that can be owned by an agent in the system is bounded
by the number of facts in the initial configuration. In the remainder of this paper, we use the letter
m to denote this number. Moreover, since we assume facts to have a bounded size, denoted using
the letter k, the use of balanced actions imposes roughly a bound on the storage capacity of the
agents in the system. In particular, any configuration in a plan obtained from a balanced system,
may have at most mk symbols. For more about balanced systems, we point the reader to (KRS11;
KBNS13).

As we further discuss in Section 5, the assumption that all actions in the systems are balanced is
crucial for showing that the reachability problem is in PSPACE. In fact, it was shown in previous
work (KRS09) that this problem is undecidable if we allow actions to be un-balanced.

A Rewriting Framework and Logic for Activities Subject to Regulations 9

2.2. Planning Problems

Goals of a collaboration as well as the critical situations which have to be avoided often mention
time explicitly. For instance, in the clinical investigations example discussed in the Introduction,
the participants want to collect conclusive data without violating regulations. Moreover, the
sponsor should send a safety report to the FDA whenever a serious and unexpected problem
is detected within 15 days. Otherwise, the sponsor can be severely penalized. We extend the
notion of initial, goal and critical configurations proposed in (KRS11) by attaching a set of time
constraints to configurations. In particular, timed initial, goal and critical configurations have the
following form:

{Q1QTy, Q2QTs,...,Q,QT,} | T

where 7 is a finite set of time constraints as shown in Eq. 1 such that its variables are in
T, T1s,...,T,.

For instance, in the clinical investigations example, a possible goal configuration is the one
representing a situation when the data of a subject is collected in specified intervals for some
number of times. The following goal configuration specifies that the goal is to collect the data of a
subject 25 times in intervals of 28 days, but with a tolerance of 5 days:

{TimeQT, Data(Id,1)QT1,..., Data(Id,25)QT55}

with the time constraints 7;+23 < T}, 1 < T;+33 and thatT" > T}, for 1 < ¢ < 25. Formally, any
instantiation of the variables 77, . . ., Th5 that satisfies the set of constraints above is considered a
goal configuration.

Similarly, configurations:

{Detect(1d)QT}, Report(Id,ok)QTy } | {T> > T} + 15}
{TimeQT, Detect(1d)QT}, Report(Id,no)@QTs} | {T > Ty + 15}

are critical for the participants of a clinical investigation, since a problem was detected at time
T, but the written report was not sent to the FDA on time, i.e., within 15 days of detecting the
problem.

Adding time constraints to configurations is not a restriction of the model. Quite the contrary,
time constraints provide a general mechanism to specify in a succinct fashion the set of goal and
critical configurations expressing time requirements.

For simplicity, we often omit the word ”timed” in initial/goal/critical configurations regardless
of time constraints being attached or not.

As in (KBNS13), we assume that the goal and critical configurations are closed with respect to
fresh values. That is, if a configuration C' containing some nonces is a goal (respectively, critical)
state, then C'o is also a goal (respectively, critical), where o is a renaming of nonce names. This
assumption is sensible, as when defining critical and goal configurations, one cannot specify the
nonce names in advance, since these are freshly generated during the execution of the process
being modeled. The particular nonce name should not matter for classifying a configuration as
critical or a goal configuration.

Planning Problems In (KRS11; KRS09) three compliance problems were introduced in
the setting without explicit time or branching (actions with non-deterministic effects). These

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 10

variations of the planning problem differentiate in the approach to confidentiality issues. They
express different degrees of trust between the agents of the system and consequently consider
different demands on the collaboration process. Moreover, different compliance problems are not
generally of the same computational complexity (KRS09).

We now restate two if these problems in our setting with explicit time and branching.

Given an initial configuration W7 and a finite set of goal and critical configurations, we call a
branching plan P compliant if it does not contain any critical configurations and moreover if all
branches of P lead from the initial configuration W to a goal configuration.

— (Timed plan compliance problem) Given a timed local state transition system 7, an initial
configuration W consisting of timestamped facts and a finite, possibly empty, set of time
constraints, a timed goal configuration Z, and a finite set of timed critical configurations, is
there a compliant plan which leads from W to Z?

— (Timed system compliance problem) Given a timed local state transition system 7, an initial
configuration W consisting of timestamped facts and a finite, possibly empty, set of time
constraints, a timed goal configuration Z, and a finite set of timed critical configurations, is no
timed critical configuration reachable from W, and does there exist a plan leading from W to
VA

In (KRS09), the plan compliance problem without explicit time was called weak plan compli-
ance.

Notice the difference in the confidentiality demands in the above problems. System compliance
is a very strong notion, demanding that no critical configuration is reachable no matter what
happens. It is most suitable for modelling very low level of trust among the agents, who can
confide in system being well-designed. Since the plan compliance only requires the existence of a
plan that does not contain a critical state, it is suitable for systems with considerable trust among
the agents. In fact, agents must trust each other to follow the plan, because if they deviate from
the plan, then all guarantees of compliance are lost.

Although the above problems are stated as decision problems, we prove more than just existence
of a plan. Ideally, we are also able to generate a plan when there is a solution. Unfortunately, the
number of actions in the plan may be very large, potentially increasing the complexity of the
plan generation. For this reason we follow (KRS11) and use the notion of “scheduling” a plan.
However, since we are dealing with branching plans, whereas (KRS11) considered non-branching
plans, we need to agree how the nodes of a branching tree are enumerated. Therefore, we assume
fixed a tree traversal procedure. It can be any traversal procedure, for instance, depth-first traversal
procedures (pre, in-order, or post-order) or a breadth-first traversal procedure. Assuming such
a tree traversal procedure, a scheduling algorithm takes an input ¢ representing the node in the
agreed traversal and outputs the i action of the plan, which extends this node.

Definition 2.2. Assume pre-defined any tree traversal procedure. An algorithm is said to schedule

t The third compliance problem, introduced as the plan compliance problem in (KRS09), was called semi-critical plan
compliance problem in (KBNS13) where it was observed that, for systems without explicit time, this problem is
reducible to an instance of the plan compliance problem with a larger set of critical configurations. This set includes
the set of semi-critical configurations from which it is possible to reach a critical state of a particular agent without the
participation of this agent. The same reduction can be obtained for TLSTSes.

A Rewriting Framework and Logic for Activities Subject to Regulations 11

aplan if it (1) finds a plan if one exists, and (2) on input ¢, if the plan contains at least ¢ nodes,
then it outputs the 7*" action of the plan, otherwise it outputs 7o.

3. Formal Semantics using Linear Logic with Definitions

Tight connections between linear logic and multiset rewriting have been established in the
literature (HM94; KRS11). For instance, Kanovich ef al. (KRS11) established connections between
linear logic provability and the reachability problem. These results are interesting as they provide
a logical foundations to multiset rewriting using linear logic. Moreover, results established for
multiset rewriting theory may also be used to establish novel results in linear logic. For example,
Kanovich et al. (KRS11) also showed that the reachability problem of balanced systems is
PSPACE-complete. From this result and the tight connection to linear logic, we can establish that
the provability problem for the fragment of balanced bipoles (VN12) is also PSPACE-complete.

This section establishes a similar result for TLSTSes based on linear logic with defini-
tions (PSH93; DB08), an extension of linear logic with fixpoint definitions. In particular, we
provide an encoding for TLSTSes such that given an initial configuration W and a TLSTS, then
there is a one-to-one correspondence between the set of plans from W to a goal state Z and the
set of (cut-free) focused proofs (JMA92) of its encoding. This result together with our complexity
results established in Section 5 allows us to infer complexity results for the reachability problem
for the fragment below of linear logic with definitions. We believe that this is the first complexity
results for the provability problem of fragments of linear logic that use definitions.

Readers that are not interested in Linear Logic may feel free to skip this section and proceed to
Section 4.

3.1. Focused Proof System for Linear Logic with Definitions

The focused proof system, LLF, for linear logic is depicted in Figure 2 and was introduced
by Andreoli (JMA92). Focused proofs can be regarded as the normal form proofs for proof
search. In order to formally introduce LLF, we first classify the connectives 1, ®, &, and 3 as
positive and the remaining as negative. This distinction is natural as the introduction rules for the
positive connectives are not-necessarily invertible, while the rules for the negative connectives are
invertible. The same distinction, however, does not apply so naturally to literals and hence these
are arbitrarily classified as positive or negative. Positive polarity literals and formulas whose main
connective is positive are classified as positive formulas and the remaining as negative formulas.

As one can see from an inspection of LLF in Figure 2, there are two different sequents in
LLF: those containing 1} which belong to the negative phase where only negative formulas are
introduced, and those containing |} which belong to the positive phase and only positive formulas
are introduced. The decide rules D1, D, reaction rules R 1}, R |} and the bang introduction rule !
mark transition between positive and negative phases.

A key property of LLF is that it allows one to construct macro-rules that introduce synthetic
connectives. For example, assume that the N1, N5, N3 are all negative formulas. Then from the
focusing discipline, there are only two possible ways to introduce the sequent - © : I'y,I's |}

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 12

Introduction Rules

Fe:rfL FO:THL,FG FO,F:THL
}—G:PﬂL,J_[] F@:rﬂL,F@GH FO:TfL,7F 17
- FO:WLF FO:T{L,G FO:T 1\ L, Fle/a]
I—@:FﬂL,T[] FO:TNLF&G [&] FO:TfL,Va F [¥]
. FO:T|F I—@:F’lLG[®] FOF
%e:w” FO:T,T' | FRG I—@:l}!FH
FO:T|F Fe:T |G FO:T | Flt/a]
e.riFag [re.riFaqg [o TiF
Identity, Reaction, and Decide rules
FO:T,S1 L
S - I £o:L,omh
F@:Aj;lLAp[l] F@,A;:uAP[Q} Fo.rq1s &M
Fe:T|P FO,P:T|P FOTEN
}—G:F,Pﬂ[1] FO,P:Tf [Dz] I—@:FUN[Y]

Fig. 2. The focused proof system, LLF, for linear logic ’MA92). Here, L is a list of formulas, © is a
multiset of formulas, I is a multiset of literals and positive formulas, A, is a positive literal, NV is a
negative formula, P is not a negative literal, and S is a positive formula or a negated atom.

(N1 @ N2) ® Nj:
F@:FlﬂNl "@ZFgﬂ‘Ng "@ZFlﬂ‘NQ "@IFQ'ﬂNg
"@ZFl,FQ»U(Nl EBNQ)@Ng and "@ZFl,FQli(Nl @NQ)@N:;

Hence, the formula (N7 @& N2) ® N3, under the focusing discipline, specifies such macro-rules
which are obtained by applying the corresponding positive and a negative phase rules.

One can specify in a similar way a multiset rewrite rule r as a linear logical formula F(r)
in such a way that the macro-rule obtained by focusing on F'(r) corresponds exactly to the
operational semantics of the rewrite rule » (HM94). But in order to specify in the same way the
semantics of time constraints of T'LSTSes, we need more machinery, namely definitions (PSH93;

—

DBO08). A definition is a finite set of clauses which are written as VZ[P(Z) = BJ: here P is a
predicate and every free variable of B (the body of the clause) is contained in the list Z. The
symbol 2isnota logical connective but is used to indicate a definitional clause. We consider that
every defined predicate occurs at the head of exactly one clause. Introduction rules for definitions
are shown below, where a definition can be unfolded on both the positive phase and the negative
phase:

Foe:I'| Bf

FO:T | P

FO:T{ L,Bo
FO:T ¢ L,P>@)

[def)] [deff]

The proviso for both of these rules is: VZ[P(Z) 2 Bl is a definition clause and 6 is the substitution
that maps the variables Z to the terms ¢, respectively. Thus, in either phase of focusing, if a defined
atom is encountered, it is simply replaced by its definition and the proof search phase does not
change.

A Rewriting Framework and Logic for Activities Subject to Regulations 13

We also include the rules for equality shown below:

{(FO:THL)F|6cCSU(rs)} -
FO:TLr#s 7] m[—r]

where C'SU (s, 7) denotes the complete set of unifiers of two terms. Since we are dealing with
first-order logic terms, this set either contains one unifier, the most general unifier, or it is empty
when the terms r and s are not unifiable. Notice that right equality introduction rule behaves
exactly as the rule [1]. The proof theory of inference rules such as these is well studied (see, for
example, (BM07; MMO00; DB0S)).Linear logic with definitions admits cut-elimination of LLF with
definitions (MMO00)? and the focusing discipline used above was shown to be complete (DB0S).
This paper will only need the =,. rule.

3.2. Encoding TLSTSes in Linear Logic with Definitions

Encoding Arithmetic Conditions We show how to express the semantics of TLSTSes as
search for cut-free focused linear logic proof with definitions. In particular, we use the following
definitions to specify, for example, the arithmetic operations of <, < and + that appear in
constraints:

>

x<y [= zr] &

[’y (z =s(2")) ® (y = s(¥)) @ (' <)]
r<y S B =mey=sy) e

B’y (2 =S($’))®(y=S()@ (¢ <y
Plus(z,y, 2) 2 (z=zr@y=2)]®

[F2'2"((z = (") ® (2 = s(z')) ® Plus(a’, y, 2")].

where natural numbers are expressed by using the successor function s and the constant zr
denoting the natural number zero. For instance, the definition for < contains two disjuncts: the
left disjunct specifies the base case when the value of x is zero, and the right disjunct the inductive
case, where both x and y are the successors of two numbers =’ and 3" such that ' < g/. The other
arithmetic operations can be specified in a symmetric way.

As observed in (NMO09), the definitions above can be used to compute an arithmetic operation
in a single focused step. This is because the body of all the definitions above is positive. Therefore,
once one focuses on one of the atoms defined above, one does not lose focus anymore and hence
a proof consists necessarily of a single positive phase. For example, if we focus on the atom

§ Technically it was shown that cut-elimination works when definitions satisfy certain conditions which are out of scope
of this paper. The definitions that we need here fall under this fragment.

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 14
s(zr) < s(s(zr)) one obtains the following derivation:

FO:-|s(zr) =s(ar) (=] FO:-Is
FO: |s(zr)=s(zr)®s

FO: | 3z'ys(zr) =s(zx
FO:-|[s(zr) =2zr]| ® [F2'y's(zr) = s(z') @ s(s
O s(

s(zr)) = s(s

LA A
@
N
~
N || ~~—
I
»n
—
19))

zr) < s(s(zr

At the open branch, the definition for the atom zr < s(zr) is necessarily unfolded and the left
disjunct of its definition is used to finish the proof. Notice that under the focusing discipline there
is no other way to introduce a sequent focused on the atom s(zr) < s(s(zr)). If, for example,
one attempts to prove the sequent by choosing instead the left disjunct of its body definition, one
would fail since it is not possible to introduce a sequent focused on the equality s(zr) = zr. For a
similar reason, to obtain a proof, one has to instantiate the variables =’ and 3’ with zr and s(zr),
respectively. Otherwise, it is not possible to introduce the resulting equalities.

Encoding of Timestamped Facts and Constraints Using above definitions, we encode a
constraint of the form 7 o T5 + d as a logical formula

[Plus(Ty,d, T2)] @ [Ty o T},

where o € {>,> =,<,<} and "d" is the term corresponding to the natural number d. The
encoding contains the constants s and zr. For instance, the natural number 2 is translated into the
term s(s(zr)). Notice as well that this formula has only positive connectives and as illustrated
above, once it is focused on, focusing is never lost. Therefore, we can use them to check in one
positive phase whether a constraint is satisfied. If C' is a constraint then we denote "C™ as the
logical formula obtained from C.

To encode a timestamped fact with predicate name P in linear logic, we use a new predicate
name P’ with arity increased by one. The encoding " P(¢)@t ™ is the formula P’(¢, ¢). We extend
the definition of "-™ for constraints, natural numbers, and timestamped facts to multiset as usual.

The encoding of a configuration will be placed in the linear context of sequents, namely in the
context I' of the sequents - O : I" {. As we show below, the encoding of rewrite rules will be
placed in the classical context, that is, the context ©. This is because rewrite rules can be used any
number of times.

Encoding of Actions To encode an action of the form
W Y =AW @@, W,

in linear logic, we first need to specify the timestamps of the form 7" + d; appearing in the
post-conditions W;s. For this, we construct two sets ij and Wj" from W': for each fact of the

form Q;Q(T + d;) in W’ we add Q,;QT; in ij , where Tj; is a new variable, and the formula
Plus(T,"d; ", T;) to W5 and for each fact of the form @Q;@(T") in W' we add the same fact to

ij and no formula in W7 Intuitively, the set W specifies the values for the new time variables

used in ij to be the same as specified in the original timestamps in . One could regard the set

A Rewriting Framework and Logic for Activities Subject to Regulations 15

W as a set of constraints to the new time variables introduced. For instance, the post-condition
of the following action,

TimeQT, P(z)QT, Q(y)QT, | {To > Ty + 1} =4 Ju.TimeQT, P(u)Q(T + 2), R(x)QT,

returns the sets { TimeQT', P(u)@Q(T3), R(x)QT} and {Plus(T, s(s(zr)),T4)}.
Now, we are ready to encode actions in linear logic: an action of the form W | ™ — 4
Ht_{.Wl DD t;;.Wn is encoded as the linear logic formula

F=V# ®FW7®qA®®rT7®§Wf—oJE:Bn{35®“W]f7®q,4} 7
j=1 j=1

where & are the free variables appearing in the rule together with all the new variables introduced
by the translation "- " and in the set V. Also, the atomic formula q 4 is used only to mark that
this action belongs to agent A. Moreover, the encoding of a set of transition rules " R is the set
with the encoding of all the transition rules in R, and the set of propositions used to mark a rule
to an agent is defined as Q; = {q, : A € I'}. Intuitively, the encodings of actions are placed in
the unbounded context in the left-hand-side of a sequent. However, since we are using a one-sided
proof system, we use its negation in the one-sided LLF system with definitions:

Jj=n

FL=3z ®rW7 ®qa® ®rT1 ® ® W @Jgg {(V{QS) ﬂrW],fu % q%)
j=1

j=1

Assume now that all atomic formulas have positive polarity, and consequently their negation
negative polarity. The focused derivation introducing F'* necessarily has to be of the form below.
Recall that the encodings of rewrite rules are in the classical context ©, thus F- € ©.

FO ALV e T @I Wi ma, FO:T &I (AT w qb)]

. —— [®]
FO DAL (@ W8 a, @ @ T QI W) @ &1 [(IRTWI T % af)]
FO:T,AlF+ >3]
Te.rap.

Since ® is a positive connective, the left-premise is necessarily introduced by a completely positive
phase introducing all tensors in @ W @ g4, @ ™1V ® ®;ZL W until one only focuses on
atomic formulas. There are then two types of atomic formulas: the first type are atoms that have
a definition, such as Plus, and those that do not have a definition, such as g 4. When one of the
former is focused on, the focusing discipline forces its definition to be opened, thus computing
the values of the timestamps of the facts in the post-conditions, specified in W¢. Moreover, as
discussed above, these are proved without using any formulas from A. That is, the sequent below

is proved in a single positive phase:

Jj=n
SCERRIN) NN

Jj=1

The same happens when checking whether the rule guard is satisfied or not. In particular, the

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 16

following sequent should be proved in a single positive phase
FO: QT

and is provable if and only if the guard 7" is satisfied.

The second type of atoms are those that do not have definitions and appear in " W and the fact
q4- Since these are assumed to have positive polarity, the only applicable rule when these are
focused on is an initial rule. This forces A to be exactly the negation of the facts in "1/ union
the fact g5 In contrast, for the right-premise of the derivation above, since ¥V and ’® are negative
connectives, the right-premise is necessarily introduced by a negative phase introducing these
connectives. Hence, the macro-rule introducing an encoding of the transition rule is necessarily of
the form, which corresponds to the one in Figure 1:

F@):F,qj,FWlf—”‘aﬂ' F@irafﬁivrwﬁcﬂ_aﬂ'
FO:T,q5, " Wto g -

Notice that if the pre-condition or the constraints in 7" of the action are not satisfied, then there is
no focused proof which focuses on the encoding of this transition. This handles the inductive case
of the adequacy result of our encoding of TLSTS in Linear Logic with Definitions (Theorem 3.1).

Encoding of Partial Goal The base case of our adequacy result consists in checking if a
partial goal is reached. This is specified in a similar way as before. Let the set of facts Z and the set
of time constraints 1" constitute a goal configuration G. To check whether this goal configuration
is reached, we encode G, written "G as follows:

Qe e,

where Z is the set of time variables appearing in the goal configuration. This formula is necessarily
introduced by the following focused derivation:

(R4, T]

FO:AIRZT FO:- QT FO:T'|T
2 x ®)

O TAIQZ e T et
FOT,AL Q7 @ T ®T g
FO:L,A{- (D]

x 3]

As before, since all atoms are assigned with positive polarity, the focusing discipline forces that A
contains exactly the negation of the facts appearing in " Z 7, that all constraints in 7" are satisfied,
and that I" contains the remaining facts in the sequent. That is, the current configuration is a goal
configuration.

Given the discussion above, we prove the following connection between linear logic with
definitions and reachability using TLSTS by induction on the height of derivation trees and on
the height/length of branching plans.

Theorem 3.1. Let 7 = (X, I, R7) be a timed local transition system. Let W be an initial
configuration and G be a goal configuration under the signature . Then the sequent

- FRT—M- . Q%, FW‘\’ rGo ﬂ X

A Rewriting Framework and Logic for Activities Subject to Regulations 17

is provable in linear logic with definitions where " X " is the encoding as defined above iff there is
a branching plan whose root is W and whose leaves contain G.

In fact, the adequacy we get is stronger than what is stated by the result above. The adequacy is
on the level of derivations (NM10). That is, proof search in the linear logic encoding corresponds
exactly to search using the encoded TLSTS. However, we must also notice that our encoding
only deals with reachability and not with the Planning Problem as we do not check whether a
state is critical. But, one can check whether a critical state C' is reachable from an initial state by
specifying the reachability goal G to be the critical state C'

4. Dealing with the Unboundedness of Time

Comparing our timed collaborative models introduced here with the results on the untimed collab-
orative systems in our previous work (KBNS13), we meet with a number of crucial difficulties.
In the case of planning problems for the untimed systems with balanced actions, we are dealing
with a finite (though huge) state space. Here the state space is internally infinite, since an arbitrary
number of time advances is allowed in principle. For a straightforward example, consider a plan
where time is eagerly advanced. That is, consider a plan with a single branch where time advances
constantly:

Time@QO0, W —joer TimeQ1l, W — ok Time@Q2, W — ek - - -

Since there are no bounds on the length nor depth of plans, the final value of the global time
cannot be bounded in advance.

This section describes how to overcome the above problem by proposing an equivalence relation
between configurations. The key idea is that since time constraints are relative, that is, they involve
the difference of two timestamps, we do not need to keep track of the actual values of timestamps,
in order to determine whether our time constraints are satisfied or not.

Truncated time differences Many formal definitions and results in this paper mention an
upper bound D, 4, on the numeric values of a given planning problem. This value is computed
from the problem itself: we set D, to be an upper bound on the numbers appearing explicitly in
a given planning problem. This bound is essential in our approach to handling the unboundedeness
of time, and in particular, with technicalities related to facts denoting future, that is facts with
timestamps that are greater than the global time, which we explain in detail later on in this section.

In particular, instead of actual values of timestamps, we will store the time differences among
the facts, but truncated by that upper bound. Formally, given a planning problem with the model 7,
let D,,4, be a natural number such that D,,,, > n + 1 for any number n appearing in time
constraints and actions in 7, and in the initial, goal and critical configurations. That is, D,
is the upper bound on any numeric value appearing either in a constraint (7; o T; & n, for
o € {<,>,=<,>}), in a timestamp of a fact in some action (e.g. FQ(T + n)), or in the
timestamps of the initial configuration.

Then the truncated time difference of two timed facts PQT7 and Q@75 with T} < T5, denoted

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 18

by dp,@, is defined as follows:

5 | Ty =Ty, provided To — 11 < Diyax
Pe = oo, otherwise .

Intuitively, we can truncate time differences without sacrificing soundness nor completeness
because time constraints are relative as defined in Eq. 1. Hence, if the time difference of two
facts is greater than the upper bound D, ., then it does not really matter how much greater it
is, but just that it is greater. For instance, consider the time constraint ¢; > t5 + d involving
the timestamps of the facts PQ¢; and QQ@t,. If 6o p = oo, this time constraint is necessarily
satisfied.

Equivalence between configurations We use the notion of truncated time differences intro-
duced above to formalize the following equivalence relation among configurations.

Definition 4.1. Given a planning problem with the TLSTS T, let D, . be an upper bound on
the numeric values appearing in 7 and in the initial, goal and critical configurations. Let

S =Q,QTy, Q2QTy, ..., QnAT,, and S = Q:QT}, Q2QTs, ..., QmAT,,

be two configurations written in canonical way where the two sequences of timestamps 77, ..., T},
and Tl, . ,fm are non-decreasing. (For the case of equal timestamps, we sort the facts in
alphabetical order, if necessary.) Then S and S are equivalent if for any 1 < ¢ < m either of the
following holds:

Ti+1 - E = ﬁ—i—l - ﬁ § Dmaz or both Ti+1 - Tz > Dmam and ﬁ—&-l - ﬁ > Dmax-

In order to illustrate the above equivalence, assume that D, ., = 3 and consider the following
two configurations:

{RQ3, PQ4, Time@11, Q@12, S@14} and { RQ0, PQ1, Time@6, Q@7, S@I} .

According to the above definition, these configurations are equivalent since their truncated time
differences are the same. This can be observed by checking their canonical representation, called
&-representation defined below.

Definition 4.2. Let S = Q:QT1,Q-QT5,. .., Q.,,,QT,, be a configuration written in canonical
way where the sequence of timestamps 77, ...,7T;, is non-decreasing(for the case of equal
timestamps, we sort the facts in alphabetical order, if necessary) and let D,,,,, be an upper bound
in a planning problem (as per Definition 4.1). The §-representation of configuration S, denoted
by Js, is the tuple

<Q13 5@1,Q27Q276Q2,Q33 Q3a ey Qia 6Q7;,Q1+17Qi+17 ceey Qm—la §Qm,_1,Qm7Qm> .

A d-representation is constructed from a given configuration by sorting its facts according to
their timestamps and sorting facts in alphabetical order as tie-breaker. Then we compute the time
difference among two consequent facts, dq, o, , - For instance, both configurations given above
have the following J-representation:

(R,1, P,c0, Time, 1,Q,2,5) .

A Rewriting Framework and Logic for Activities Subject to Regulations 19

Here a value appearing between two facts, (); and Q; 1, is the truncated time difference of the
corresponding facts, §g,,0, ., €8 »dr,p = 1 and dp Time = 00. It is also easy to see that from the
tuple above, one can compute the remaining truncated time differences. For instance, dtime,s = 3,
since 1 + 2 = 3, while g g = 00, since 1 + 00 + 1 = oo

We now formalize the intuition described above that using time differences that are truncated by
an upper bound instead of actual timestamps, we are able to determine whether a time constraint
is satisfied or not.

Lemma 4.1. Let S and S be two equivalent configurations from Definition 4.1.
S = Q1QTy, Q2QTs, . ..,Q,QT, and S = Q,QTy, Q,QTs, . .., Q,QT,.
Then the following holds for all < and j such that ¢ > 7, and for all a < D, 4:
T; —T; = a if and only if T T—a
T; —T; < a if and only if TZ fT] <a
Ti—T;>a ifandonlyif T;—T;>a

Proof. The only interesting case is the last one, which can be proved by using the fact that
a< Dmam and that S and S are equivalent. Hence, T; — Tj > Dy, > a s true if and only if
T T > Dmaz > aistrue, and Dy, > T; — T > ais trueif and only if D,y 00 > T T > a,
since T; — T = T, — T L]

Following Lemma 4.1, we say that a §-representation A satisfies a constraint if a configuration
W, such that dyy = A, satisfies that constraint.

Handling time advances and action applications Our next task is to show that our equiva-
lence relation using truncated time differences is well-defined with respect to actions. That is, we
show that actions preserve the equivalence among configurations. This will allow us to represent
plans using d-representations only.

We extend action application to §-representations. It follows from the Lemma 4.1 that the same
action is applicable in configurations with the same J-representation. We, therefore, say that an
action is applicable in a 0-representation A if the same action is applicable in a configuration W,
such that dyy = A. That is, any action « that is applicable in some configuration S is applicable in
its §-representation ds, and the resulting d-representation, &%, is the d-representation of S’, where
S—,8"

ds —a O
! ! “)
S =4 &

This is well defined if it is independent of the choice of configurations. Recall that there are two
types of actions, namely time advances and instantaneous actions that belong to agents. Time
advances only change the timestamp denoting the global time while the rest of the configuration
remains unchanged. Therefore, when we advance time in a §-representation, the position of T'imne
and the truncated time differences involving Tme need to be updated. Depending on concrete
values of time differences, the fact T'2me may move to the right.

For example, for D,,,,,, = 5 and the configuration { RQ0, PQ1, Time@3, QQ5, SQ7} with

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 20

the time advance action TimeQT — o) Time@Q(T + 1) we get

{R@0, PQ1, Time@3, Q@5, SQ7} —» o0 {RQ0, PQ1, Time@4, Q@5, SQT}

ie. (R,1,P,2 Time, 2,Q,2,5) —ciock (R, 1, P,3, Time, 1,Q,2,5) .

With another application of time tick action we then get:
(R,1, P, 3, Time, 1,Q,2,5) —ciock (R, 1, P,00,Q,0, Time, 2, S) .
Generally, the time advance action TimeQT — joer Time@(T + 1) applied to

A = <Q17517 oo 7Qi717§i717T7:m676i7Qi+175i+17 R 75m717Qm>

results in the following d-representation A’, alphabetically sorted whenever truncated time differ-
ences are equal to 0:

<Q17617' . 'aQifh [61'71 + 1],Tim€,(5i - 1)Qi+176i+17 .. 'a§mflan>7 lf(sz Z 1
(Q1,01,-..,Qi—1,0i—1, Qit1,- -, Qits, [0i1 + 1], Time, 041 — 1,. .., 6r—1, Qm),
if §; = 6i+l71 = 0»5i+l >0

where [d] denotes d, for d < D4z, and denotes oo otherwise.
Incase A = (Q1,01,...,0m—1,Time), then A =(Q1,61,...,[0m-1 + 1], Time).

For the application of instantaneous actions recall that the fact Time@T remains unchanged,
while some facts from the pre-condition of the action are replaced with other facts whose times-
tamps are of the form 7'+ d. We modify the é-representation in the following way. We first remove
the facts that appear in the pre-condition of the action and not in its post-condition. Then we insert
the new facts from the post-condition, positioning them on the basis of their time difference to the
fact T'tme, and alphabetically if necessary. Finally, we fill in the new time differences. This is
best explained on an example. Consider the following J-representation

A= <B(d)7 Oa F(C)7]-v G(av b)a 37 Time? 11 F(Q), 27 F(d)>
with D, .. = 3 and the action
TimeQT, G(z,y)QTy, F(x)QT, — 32.TimeQT, G(y, 2)Q(T + 1), F(y)QT

which is applicable to A with the substitution o(x) = a, o(y) = b. We remove those facts from
the pre-condition that do not appear in the post-condition, namely G(a,b) and F(a), and get an
expression

B(d),0,F(c),1,-,3,Time,1,_,2, F(d).
Next we insert the facts that appear in the post-condition and not in the pre-condition. In our case
above that is the fact G(b, n), where n is a fresh value. The placement of these facts is determined

by the timestamps appearing in the action, which are of the form 7" + d, where T is the global
time. In our example the fact G(b, n) comes with the timestamp (7" + 1) and we get:

(B(d),0, F(c), 00, Time, 1,G(b,n),2, F(d)) .

after updating the truncated time differences. Notice that, for example, the relative time difference
between facts F'(d) and T'ime is still 3.
However, in order to prove that actions preserve the equivalence among configurations, we need

A Rewriting Framework and Logic for Activities Subject to Regulations 21

yet another assumption to be able to faithfully handle time advances. The problem lies within the
future facts, that is, the facts with timestamps greater than the global time. If there is a future fact
P such that drime, p = 00, then it is not the case that equivalence is preserved when we advance
time. For example, consider the following two configurations equivalent with the upper bound
Do = 3t

S1 = {Time@0, PQ5} and Sy = {Time@0, PQ4}.

If we advance time on both configurations, then the resulting configurations, S and S5, are not
equivalent. In particular, the truncated time difference dtime, p is still co in S7, while it changes to
3 in S}. Notice that the same problem does not occur neither with present nor past facts, i.e., the
facts with timestamps that are smaller or equal to the global time.

Definition 4.3. Given an upper bound D,,,, in a planning problem (as per Definition 4.1),
a configuration S is called future bounded if for any future fact P in S, the time difference
6Time,P S Dmaa:-

Recall from Section 2 that there are two types of actions, namely, the action that advances
time and instantaneous actions belonging to agents. Moreover, recall that the latter actions are
restricted in such a way that all created facts have timestamps of the form 7" + d, where 7' is the
global time. This restriction allows us to show that actions preserve the future boundedness of
configurations as states the following result.

Lemma 4.2. Let 7 be a TLSTS, D4, be the upper bound in a planning problem (as per
Definition 4.1), and S be a future bounded configuration. Let S’ be the configuration obtained
from S by applying an arbitrary action in 7. Then &’ is also future bounded.

Proof. Let S % S', and assume S’ is not future bounded. Then there is a fact Q’@Q7” in S’
such that 77 — T > D,,q4, where T is the timestamp of Time, i.e. the global time in both S and
S’. Since S is future bounded, the fact QQ’@QT"” does not appear in S, but is created by the action a.
Hence, T" = T + D for some number D < D,,, .., which contradicts with 77" — T > D,,0..[]

As per Definition 4.1 the initial configuration in a planning problem is future bounded, which
as per above lemma implies that all configurations in a plan are also future bounded. Notice that
even if we relax the assumption that the initial configuration is future bounded, we can make it
future bounded by setting the value of D, to be the greater than all the timestamps in the initial
configuration, i.e., D4, would still be the upper bound on the values of the given TLSTS and in
the initial, goal, and critical configurations. The important result, given by the above lemma, is
that future boundedness is preserved with action application.

Following Lemma 4.1 and Lemma 4.2, given a planning problem, we say that a §-representation
is an initial / goal / critical / future bounded 6-representation if it is the d-representation of an
initial / goal / critical / future bounded configuration. A plan over d-representations is compliant
for a given planning problem if it does not contain any critical §-representations and if all of its
branches lead from the initial d-representation to a goal J-representation.

We are now ready to show the main result of this section.

Theorem 4.1. For any given planning problem the equivalence relation between configurations
given by Definition 4.1 is well-defined with respect to the actions of the system (including

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 22

time advances) and goal and critical configurations. Any plan starting from the given initial
configuration can be conceived as a plan over J-representations.

Proof. We first prove that the equivalence among configurations is well defined with respect to
application of actions, i.e. that action application on J-representations is unambiguous. It must be
independent of the choice of configurations in (4). Consider the diagram below, where S; and So
are two equivalent configurations. Assume that S is transformed to S] by means of an action «.
By Lemma 4.1 the configuration S, also complies with the time constraints required in «, and
hence the action « is applicable to Sp and will transform S into some S%. It remains to show that
Sy is equivalent to S5.

81 —a Si
!
82 —a Sé

We consider our two types of actions, namely, time advances and instantaneous actions (see
Section 2). Let the time advance transform S; into S;’, and S, to S5 Since only the timestamp T
denoting the global time in Teme@T is increased by 1, and the rest of the configuration remains
unchanged, only truncated time differences involving T'vme change in the resulting configurations.
Because of the equivalence S; ~ S5 , for a fact P@Tlp in S with T1P < T, TimeQT and
0p Time = t, we have PQTY with T < T, Time@QT and 0p Time = t in Sy as well. Therefore,
we have dp 7ime = [t + 1] both in S7 and S5. On the other hand for any future fact Q@QT @ with
8Time,g = tin Sy and in Sa, we get dripme o = t — 1 in both S| and S}. Therefore, S;’ and S}
are equivalent. From Lemma 4.2, we have that both S;’ and S}, are future bounded.

For the second type of actions, namely the instantaneous actions belonging to agents, the
reasoning is similar. Each created fact in the configuration S| and S} will be of the form PQ (T +
d) and PQ(T?+d) , where T" and T? represent global time in S; and Ss, respectively. Therefore
each created fact has the same difference d to the global time in the corresponding configuration.
This implies that the created facts have the same truncated time differences to the remaining facts.
Hence S;” and S} are equivalent. Therefore, action application on d-representations shown in (4)
is well defined.

Finally, as per Lemma 4.1, S; is a goal (respectively, critical) configuration if and only if Ss is
a goal (respectively, critical) configuration.

By induction on the length of the plan, it immediately follows that, given a planning prob-
lem, any compliant plan over configurations can be represented by a compliant plan over -
representations. That is, the abstraction of configurations to J-representations is complete.

It remains to show that the abstraction is also sound, namely that, from a compliant plan
over d-representations for a given planning problem, we can extract a concrete plan over config-
urations and that such a plan is compliant with respect to that planning problem. Any given
d-representation corresponds to an infinite number of configurations. For example, for the
d-representation (Q1, 1, Q2, - - -, @m—1,0m—1, @m), one of the corresponding configurations is

{Q1@0, Q2@6;, Q5@ (61 + 63), ..., Qm@(61 + - + Op_1)}

where 57 = 0; if 6; < Dy a2, and 5; = Dynae + 1if §; = co. We are, however, already given the
initial configuration W) in the planning problem, for which we have Ay = dyy,.

A Rewriting Framework and Logic for Activities Subject to Regulations 23

We prove the existence of a plan over configurations by induction on the length of the plan
over d-representations. Let Ag —,, Ay —4, -+ —4, A, be aplan over d-representations,
compliant with the respect to the given planning problem. Then A is the J-representation of
the initial configuration, i.e. Ay = dw,. For each A;_; —,, A, as per Lemma 4.1, since
A;_1 = 0w,_,, the same action a; is applicable to the configuration W,_4, resulting in ;. As
proven above, and shown in (4), it follows that A; = dyy, :

6Wo (SWF 1 5W7 5Wn
| | | |

AO —a; " TPai_q Ai—l —a; A7 *>(17',+1 T ay, A"
l l ¢ l

Wo —a ey Wict —a, Wi —ay, o —a, Wiy

Hence, we get a plan over configurations consisting of same sequence of actions as the given plan
over d-representations. Since none of the J-representations A; = dyy, is critical, it is also the case
that none of the configurations W; is critical. Also, since A,, = dyy,, is the goal §-representation,
it follows that W, is a goal configuration. Hence the plan Wy —,, Wi — --- =, W, is
compliant with respect to the given planning problem. L]

The above theorem establishes that using J-representations for writing plans is well defined,
but it does not establish a bound on the number of J-representations. To achieve this, we need
the further assumption that all actions are balanced. Recall that balanced actions are actions that
have the same number of facts in their pre- and post-conditions. By using balanced actions, the
number of facts in any configuration of a plan is the same as the number of facts in the plan’s
initial configuration. Hence, as we describe in Section 5, we can establish that there is a finite
number of J-representations.

5. Complexity Results

This section enters into the details of the complexity of the planning problems for TLSTSes.
These problems were introduced in (KRS11; KRS09) in the setting without explicit time or
branching. At the end of Section 2 we have restated these problems in our setting with explicit
time and branching. As already mentioned, different compliance problems are not always of
the same computational complexity. For example, in the case of systems with non necessarily
balanced actions and with no fresh values, system compliance is EXPSPACE-complete (KRS09),
while the plan compliance problem is undecidable (KRS09). The system compliance problem
becomes undecidable if the creation of fresh values is allowed in systems with possibly unbalanced
actions (KBNS13). On the other hand, in balanced systems, even when fresh values are allowed
both problems are PSPACE-complete (see Table 1). It is not a priori clear whether these problems
are of the same complexity, nor what the complexity of each of the problems is, for the case of
timed systems as well as for branching. We investigate the complexity of these variations of the
planning problem next. Our complexity results for TLST'Ses are summarized in Table 1.

Recall that facts are timestamped and that there is a finite, possibly empty set of time constraints
attached to a timed initial, goal and critical configuration. Recall as well that for a given initial
configuration W and a finite set of goal and critical configurations, we consider a branching plan

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 24

Table 1. Summary of the complexity results for the planning problems for balanced systems.
We mark the new results appearing here with a *.

Planning LSTSes (No time, no branching) TLSTSes (Possible nonces)
Problems No fresh values Possible nonces No branching Possible branching
PSPACE- PSPACE- PSPACE- EXPTIME-
(Weak) Plan N R
complete (KRS11) complete(KBNS10) complete complete
Svstem PSPACE- PSPACE- PSPACE- EXPTIME-
y complete (KRS11) complete(KBNS10) complete® complete®

‘P compliant if it does not contain any critical configuration, and moreover if all branches of P
lead from configuration W to some goal configuration.

Throughout this section, we assume that all actions are balanced, i.e., actions have the same
number of facts in their pre and post-conditions, and that the size of facts is bounded.

5.1. Planning Problems for TLS'TSes with Non-Branching Actions only

We first investigate the complexity of planning problems for TLSTSes when actions are non-
branching and balanced and when the size of facts is bounded. We show that these problems are
PSPACE-complete with respect to the parameters from the given planning problem.

PSPACE-hardness: It was shown in (KRS11; KBNS10) that one can faithfully encode a Turing
machine with a fixed size tape using systems with balanced actions. In short, a configuration of a
Turing machine is represented by a TLST'S configuration and to each instruction of a machine
corresponds a sequence of balanced rewrite rules. The same idea works in our setting with time.
It is easy to modify the encoding in (KRS11). Timestamps do not play any important role in
such encoding. Also, critical configurations are not necessarily used in the encoding, so we
can conclude that all three planning problems and the reachability problem for TLSTSes with
non-branching balanced actions and facts of bounded size are PSPACE-hard.

PSPACE upper bound: It is more interesting to show that the planning problems are in PSPACE
when the size of facts is bounded and actions are non-branching and balanced. In particular, we
will now use all the machinery introduced in Section 4 by using J-representations of configurations
to search for compliant plans.

In order to determine the existence of a compliant plan, it is enough to consider plans that never
reach configurations with the same J-configuration twice. If a plan reaches a configuration whose
d-representation is the same as a previously reached configuration, there is a cycle of actions
which could have been avoided. The following lemma imposes an upper bound on the number of
different d-representations in a plan, given an initial finite alphabet. Such an upper bound provides
us with the maximal length of a plan one needs to consider.

Lemma 5.1. Given a TLSTS 7T under a finite alphabet 3, an upper bound on the size of facts, &,
and an upper bound, D, 4., on the numeric values appearing in the planning problem, namely, in
T and in the initial, goal and critical configurations, then the number of different §-representations,

A Rewriting Framework and Logic for Activities Subject to Regulations 25

denoted by Ly (m, k, Dypax), with m facts (counting repetitions) is such that
Lr(m, k, Dyaz) < (Dmaz + 2) ™" VJ™(D + 2mk)™",

where J and D are, respectively, the number of predicate symbols and the number of constant
and function symbols in the initial alphabet 3.

Proof. Let (Q1,00,,0,-®@2,- -, @m-1,0Q,._1,0..» @m) be a d-representation with m facts.
There are m slots for predicate names and at most mk slots for constants and function symbols.
Constants can be either constants in the initial alphabet 3 or names for fresh values (nonces).
Following (KBNS 10), we need to consider only 2mk names for fresh values (nonces). Finally,
only time differences up to D,,,, have to be considered together with the symbol co and there
are m — 1 slots for time differences in a d-representation.]

Intuitively, our upper bound algorithm keeps track of the length of the plan it is constructing
and if the length of such a plan exceeds Ly (m, k, Dyp,q.), then the same d-representation has been
reached twice. This is possible in PSPACE since the number of different J-representations given
above, when stored in binary, occupies only polynomial space with respect to its parameters.

For the below results, we assume that, given a TLSTS T, and a finite set of goal and critical
configurations, it is possible to check in polynomial space whether a configuration is critical,
whether it is a goal configuration, and whether an action is valid, i.e. whether it is an instance of
an action from 7 that is applicable in a given configuration.

Theorem 5.1. Let 7 be a TLSTS with balanced non-branching actions. Then the plan compli-
ance problem is in PSPACE with respect to m, k, and logy D44, Where m is the number of facts
in the initial configuration, k is the upper bound on the size of facts, and D, is the upper bound
on the numeric values appearing in the model 7, and in the initial, goal and critical configurations.

Proof. Assume given three programs, C, G, and A, such that they return the value 1 in polyno-
mial space when given as input, respectively, a configuration that is critical, a configuration that
contains the goal configuration, and a pair of a configuration and a transition that is valid, that is,
an instance of an action in the TLSTS T is applicable to the given configuration, and return 0
otherwise.

Let m be the number of facts in the initial configuration W. Moreover, assume as inputs an
upper bound, &, on the size of facts, an upper bound, D,,,,;, on the numeric values appearing in
the planning problem, that is in the given TLSTS 7, in the initial, goal and critical configurations,
programs G, C, and A, as described above, and a natural number 0 < ¢ < Ly (m, k, Dpaz)-

We modify the algorithm proposed in (KBNS10) in order to accommodate explicit time. The
algorithm must return “yes” (i.e. ACCEPT) whenever there is compliant plan from the initial
configuration W to a goal configuration, that is a configuration S such that G(.S) = 1. In order to
do so, we construct an algorithm that searches non-deterministically whether such a configuration
is reachable. Then we apply Savitch’s Theorem to determinize this algorithm. However, instead
of searching for a plan using concrete values, we rely on the equivalence described in Section 4
and use J-representations only. Theorem 4.1 guarantees that this abstraction is sound and faithful.

From G, C, and A, it is easy to construct new functions G’, C’, and A’ that use J-representations
instead of configurations. In particular, since time constraints associated to goal and critical

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 26

configurations are also relative, these can be checked by using the truncated time differences in
d-representations.

The algorithm begins with W} set to be the J-representation of W and iterates the following
sequence of operations:

1 If W; is representing a critical configuration, i.e., if C'(W;) = 1, then return FAIL, otherwise
continue;

2 If W is representing a goal configuration, i.e., if G’'(W;) = 1, then return ACCEPT; otherwise
continue;

3 Ifi> Ly(m,k, Dpaz), then FAIL; else continue;

4 Guess non-deterministically an action, r, from 7 applicable to Wy, i.e., A'(W;,r) = 1. If no
such action exists, then return FAIL. Otherwise replace W; with the J-representation W,
resulting from applying the action r to the J-representation W;. This is done as expected,
by updating the facts, updating the positions of facts and the corresponding truncated time
differences and continue;

5 Seti=i+l.

We now show that this algorithm runs in polynomial space. We start with the step-counter ¢:
The greatest number reached by this counter is Ly (m, k, Dypq.). When stored in binary encoding,
this number takes only space polynomial in the given inputs:

log(Lr(m, ky Dpmaz)) < (m — 1)1og(Dmas + 2) + mlog(J) + mklog(D + 2mk).

Therefore, one only needs polynomial space to store the values in the step-counter.

We must also be careful to check that any §-representation, W;, can be stored in polynomial
space to the given inputs. Since our system is balanced, the size of facts is bounded, and the
values of the truncated time differences are bounded, hence the size of any J-representation,
(Q1,00,.02,Q2y -+ Qim—1,00,,_1.01 > @m), in a plan is polynomially bounded.

Finally, the algorithm needs to keep track of the action r guessed when moving from one
configuration to another and for the scheduling of a plan. It has to store the action that has been
used at the i** step. Since any action can be stored by remembering two §-representations, one
can also store these actions in space polynomial in the inputs. L]

The reachability problem is an instance of the plan compliance problem with an empty set of
critical configurations, hence the reachability problem for TLST'Ses with balanced non-branching
actions is in PSPACE as well.

Next we turn to system compliance problem. Recall that besides the existence of a compliant
plan it is additionally requested that no critical configuration is reachable by any sequence of
actions in the given system.

Theorem 5.2. Let 7 be a TLSTS with balanced non-branching actions. Then the system com-
pliance problem is in PSPACE with respect to m, k, and logy D,q,, Where m is the number
of facts in the initial configuration, k is the upper bound on the size of facts, and D, is the
upper bound on the numeric values appearing in the model 7, and in the initial, goal and critical
configurations.

Proof. In order to show that the system compliance problem is in PSPACE we modify the
algorithm proposed in (KRS11) to accommodate timestamps and time constraints. Again we rely

A Rewriting Framework and Logic for Activities Subject to Regulations 27

on the fact that NPSPACE, PSPACE, and co-PSPACE are all the same complexity class. We use
the same notation from the proof of Theorem 5.1 and make the same assumptions. In particular,
we use the algorithms G’,C’, and A’ that run in polynomial space and that check whether a timed
configuration is a goal configuration, a critical configuration, or if an action is valid in the given
TLSTS T. Again we rely on the equivalence between configurations described in Section 4 and
use J-representations only. Theorem 4.1 guarantees us that this abstraction is sound and faithful.

We first need to check that none of the critical configurations is reachable from the initial config-
uration 1. To do this we provide a non-deterministic algorithm which returns “yes” exactly when
a critical configuration is reachable. The algorithm starts with W} set to be the J-representation
of W. For any i > 0, we first check if C'(W;) = 1. If this is the case, then the algorithm outputs
”yes”. Otherwise, we guess an action r such that A’(r) = 1 and that it is applicable to the 0-
representation W;. If no such action exists, then the algorithm outputs “no”. Otherwise, we replace
W; with the §-representation W, resulting from applying the action r to J-representation W;.
This is done as expected, by updating the positions of facts and the corresponding truncated time
differences. Following Lemma 5.1 we know that at most Ly (m, k) guesses are required, and
therefore we use a global step-counter to keep track of the number of actions. As shown in the
proof of Theorem 5.1, the value of this counter can be stored in PSPACE.

Next we apply Savitch’s Theorem to determinize the algorithm. Then we swap the accept
and fail conditions to get a deterministic algorithm which accepts exactly when all critical
configurations are unreachable.

Finally, we have to check for the existence of a compliant plan. For that we apply the same
algorithm as for the timed plan compliance problem from Theorem 5.1, skipping the checking
of critical states since we have already checked that no critical configurations is reachable from
W . From what has been shown above we conclude that the algorithm runs in polynomial space.
Therefore the system compliance problem is in PSPACE. L]

5.2. Planning Problems for TLS'TSes with possibly Branching Actions

We now consider the plan compliance problem when actions may be branching. In particular, we
show that when actions are balanced then the plan compliance problem is EXPTIME-complete
with respect to the number of facts, m, in the initial configuration, the upper bound, k, on the size
of facts, the upper bound, D, .., on the numbers explicitly appearing in the planning problem,
and the upper bound, p, on the number of post-conditions of an action. For these complexity
results we use alternating Turing machines (CKS81).

An alternating Turing machine (ATM) is a non-deterministic Turing machine with states that
are either existential or universal states. An alternating Turing machine in an existential state
accepts if some transition from that state leads to an accepting state, while an alternating Turing
machine in a universal state accepts if every transition from that state leads to an accepting state.
Configurations of ATMs, as with standard Turing machines, consist of a tape contents, head
position and a state. Computations of alternating Turing machines can be represented as trees,
which is similar to the representation of branching plans in T'LSTSes.

EXPTIME-hardness: The lower bound for the plan compliance problem can be inferred from a
similar lower bound described in (KVO1). It was shown that one can encode alternating Turing

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 28

machines by using propositional actions that are balanced and branching. Time does not play an
important role for that encoding.

EXPTIME upper bound: Our upper bound algorithm uses an alternating Turing machine. In
particular, we show that the plan compliance problem is in alternating-PSPACE (APSPACE) with
respect to the number of facts, m, in the initial configuration, the upper bound on the size of facts,
k, the upper bound, D, .., on the numbers appearing explicitly in the planning problem, and the
upper bound, p, on the number of post-conditions of any action. That is, an alternating Turing
machine can solve the plan compliance problem using polynomial space. From the equivalence
between APSPACE and EXPTIME shown in (CKS81), we can infer that the plan compliance
problem is in EXPTIME with respect to the same parameters.

We also assume here that, given a TLSTST, and a finite set of goal and critical configurations,
it is possible to check in APSPACE whether a d-representation is a goal -representation or a
critical d-representation and whether an action is valid, i.e. whether it is an instance of an action
from 7 that is applicable in the given §-representation.

Theorem 5.3. Let 7 be a TLSTS with balanced actions. Then the plan compliance problem is
in EXPTIME with respect to m, k, and logy Dinqq, and p, where m is the number of facts in the
initial configuration, k is the upper bound on the size of facts, D,,,, is the upper bound on the
numeric values appearing in the model 7, and in the initial, goal and critical configurations, and p
is the upper bound on the number of post-conditions of actions in 7.

Proof. We exploit the fact that the complexity classes APSPACE and EXPTIME are equiva-
lent (CKS81) and show that the plan compliance problem can be solved by an alternating Turing
machine in polynomial space.

As with the proof of Theorem 5.1, we rely on the equivalence relation described in Section 4
by using the §-representations of configurations. Theorem 4.1 ensures that such an abstraction is
sound and complete.

We define the following function FIND(z, X'), which takes a natural number, ¢, specifying the
depth of a plan and a d-representation, X, and returns ACCEPT if a compliant plan of depth ¢
starting from X exists, and returns FAIL otherwise. Recall from Lemma 5.1 that it suffices to
consider plans of depth bounded by Ly (m, k, Dyqz). Our upper bound algorithm is the following:
Initialize ¢ = Ly (m, k, Dpq.) and W; as the d-representation of the initial configuration W.
Then proceed as follows:

If W; is a critical d-representation then FAIL, else continue;

If W; is a goal é-representation, then ACCEPT, else continue;

If 7 = 0 then FAIL, else continue;

Guess non-deterministically an action X | Y — 4 J21.X; @ - - - Jx,,. X, that is applicable
to W;, yielding d-representations Wl |, ..., W ;

If no such action exists return FAIL;

5 If all executions of FIND(i — 1, Wil_l), ..., FIND(z — 1, W™ ;) return ACCEPT, then return
ACCEPT, otherwise return FAIL;

AW N =

The fifth step is where we need the extra capabilities of an alternating Turing machine as we
require that all executions of FIND return ACCEPT. Given the proof of Theorem 5.1 and the

A Rewriting Framework and Logic for Activities Subject to Regulations 29

bound, p, on the number of post-conditions of actions, it is easy to check that the alternating
Turing machine runs in polynomial space. L]

Theorem 5.4. Let 7 be a TLSTS with balanced actions. Then the system compliance problem
is in EXPTIME with respect to m, k, and logy Dy,q2, and p, where m is the number of facts in
the initial configuration, & is the upper bound on the size of facts, D,,,, is the upper bound on the
numeric values appearing in the model 7, and in the initial, goal and critical configurations, and p
is the upper bound on the number of post-conditions of actions in 7.

Proof. Similar to proof of Theorem 5.2 we first check that a critical J-representation is not
contained in any tree of actions of the system with the root W. As per Lemma 5.1 it is enough to
consider trees of depth bounded by Lr(m, k, Dynaz)-

For that search we define the function CHECK(z, X), which takes a natural number, 7, specifying
the depth of a tree and a é-representation, X and returns ACCEPT if a critical §-representation
cannot be reached from X in a tree of depth ¢, and returns FAIL otherwise. The function CHECK(z,
W,) is defined as follows: We initialize ¢ = Ly (m, k, Dy,q.) and set W to be the §-representation
of the initial configuration W and proceed as follows:

1 If W; is a critical d-representation, then FAIL, else continue;

2 If 7 = 0 then ACCEPT, else continue;

3 Guess non-deterministically an action X | V" — 4 Jx1. X1 @ - - - Jz,,.X,,, that is applicable
to W;, yielding §-representations W | ... W |;
If no such action exists return ACCEPT;

4 If all of the executions of CHECK(i — 1, W} ,), ..., CHECK(i — 1, W) return ACCEPT,
then return ACCEPT, otherwise FAIL.

The forth step is where we use the extra capabilities of an alternating Turing machine as we
require that all executions return ACCEPT. Consequently, it will return FAIL if any execution of
CHECK returns FAIL, i.e. if any branch reaches a critical J-representation.

Then, if the function CHECK returned FAIL our upper bound algorithm stops and returns
FAIL. Otherwise the algorithm proceeds by checking for the existence of a compliant plan as
per algorithm given in the proof of Theorem 5.3. In case FIND(0,W;) = ACCEPT the algorithm
returns ACCEPT, and returns FAIL otherwise.

Given the proof of Theorem 5.1 and the bound, p, on the number of post-conditions of actions,
it is easy to check that the alternating Turing machine runs in polynomial space. Since the above
algorithm is in APSPACE, it is in EXPTIME. We can conclude that the system compliance
problem for systems with possibly branching actions is in EXPTIME .]

As mentioned in Section 2, in addition to checking for the existence of a plan in the given
planning problem, we are also able to schedule a plan in all of the above cases. We take the
additional input j and, in the case a compliant plan exists, we output the j-th action of the plan.
For our PSPACE results from Section 5.1, we store the action for which the counter 7 is equal
to j. Since an action can be stored as two J-configurations, we can remember the j-th action in
polynomial space with respect to inputs. For our EXPTIME results from Section 5.2, we assume
given the tree traversal procedure and in case the compliant plan exists, following our algorithm
we run the fixed traversal strategy and output the j-th action.

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 30

6. Relaxing the restrictions on TLSTSes

In the previous section, we demonstrated that several problems, including the reachability problem,
are decidable (PSPACE-complete or EXPTIME-complete) when assuming that actions have the
following restrictions:

1 All actions are Balanced;

2 The timestamps of all facts created by an action are of the form 7" + d, where T is the current
time and d a natural number;

3 Time constraints of an action are of the form show in Eq. 1, i.e., Ty =To +d, Ty > T5 +d,
orTy >T5 +d, involving exactly two timestamps and a natural number d.

Besides the intuitions given in Section 2 for these restrictions, we show in this section that
relaxing any one of these restrictions leads to the undecidability of the reachability problem. The
undecidability of the reachability problem implies the undecidability of the planning problems we
study in Section 5.

Kanovich et al. (KRS09) have already shown that the reachability problem is undecidable
when unbalanced actions are allowed. Thus, we show that the two remaining conditions are
indeed necessarily for the decidability of the reachability problem. In Section 6.1, we demonstrate
that if we only relax condition 2 above, then the reachability problem is undecidable in general,
while in Section 6.2 we show that if we only relax condition 3 above then the reachability is
also undecidable in general. In order to obtain these undecidability results, we show that the
reachability problem can be reduced to the termination problem of a two counter Minsky machine,
which is known to be undecidable (MM61). We briefly review Minsky machines:

A Two-Counter Machine proposed by Minsky (MMG61) is a machine that contains two registers
r1 and 79, a set of states, S, and a set of instructions, W. A configuration of a Minsky machine is a
tuple (k, ¢, j), where k is the state of the machine, ¢ is the value stored in the register 71 and j the
value stored in the register r5.

There are only four types of instructions each of them leading from one state, k, to another
state, j or j1 or jo, but with the following side effects on the value of registers:

— (Add r;) insy: r; = r; + 1;g80t0 ins;;

— (Subtract r;) insy: r; = r; — 1;goto ins;;

— (0-test ;) insy: if r; = 0 goto ins;, else goto insj,;

— (Jump) insy: goto ins;;

(1) An Add r; instruction increments the register r;; (2) A Sub r; instruction is applicable only
when 7; has a positive number and decrements it; (3) A O-test r; instruction is a branching
instruction leading to one state if ; contains zero and to another state otherwise; finally (4) a Jump
instructions simply moves from one state to another without changing the values stored in the
registers. Minsky showed that the problem of determining whether a final state, ag, is reachable
from an initial state is undecidable. We assume, with loss of generality, that in the initial state the
registers r1 and r9 are set to zero.

6.1. Relaxing Advances of Timestamps

This section shows that by relaxing the restriction that timestamps of facts created by actions
should be necessarily of the form 7"+ d, where T is the current time of the enabling configuration

A Rewriting Framework and Logic for Activities Subject to Regulations 31

and d a natural number. We generalize actions to be of the following form:

ije@T, W, Pl(gl)@Tla PN Pn(En)@Tn | T — A

Ju. TimeQT, W, P/ (@)Q(T + f1(T1,...,Tyn)),..., PL.(C)Q(T + fr(Th,...,Tn)),
where in the timestamps of the created facts a polynomial f;(T4,...,T;,) is added to the global
time, T'. Polynomial f;(71, ..., T,) may contain timestamps 77, . . ., T, that appear as timestamps

of facts in the precondition of the action. We say that such an action is linearly-time-advancing if
all polynomials f;(T1,...,T,) are linear.

Given the actions of the above form, we show that the reachability problem for these systems
is undecidable already for systems with balanced actions that are linearly-time-advancing. This
means that all compliance problems discussed in Section 2 are also undecidable for such systems.

Theorem 6.1. Given a TLSTS with balanced and linearly-time-advancing actions, the reachabil-
ity problem is undecidable.

Proof. The proof is obtained by reducing the reachability problem of TLSTSes with actions
that are balanced and linearly-time-advancing to termination of Minsky machines. We encode an
arbitrary Minksy machine M as follows:

For each state label k, we associate a zero arity predicate Sty, called state fact, denoting the
current state of the machine. Moreover, we use two zero arity predicates R; and Rs to keep track
of the value stored in the registers 1 and 75, respectively. Our actions will enforce that at any
given configuration there is exactly one state fact and exactly one occurrence of a R; and a Ry
fact. We encode the values stored in the registers 1 and 75, by using the timestamps of the state
facts, and by using the facts 1 and R, appearing in a configuration as follows:

If St,@QT, R,@T} and Ro@T5 are the occurrences of the state fact and Ry, Ro in a configu-
ration, then such a configuration specifies that the machine is in state %, the value stored in the
register 71 is (T3 — T') and the value in 5 is T' — T. For instance, the following configuration
{TimeQ7, St,Q1, R;@3, R,@5} specifies M’s configuration (a, 3, 5).

Each of M’s instructions is encoded by the corresponding balanced linearly-time-advancing
actions. The actions of the encoding have the following shape:

(Add 7’1) TI'HIG‘@T7 Stk@Th Rl @TQ7 RQ@T3 — A
Time@T, Stj@T, R1@(T + TQ — T1 —+ 1), RQ@(T —+ T3 — T1)
(Add r2) TimeQT', St;;@QT1, R1@QT5, Ro@QT5 — 4
Time@T, Stj@T, Rl@(T +T5 — Tl), RQ@(T + T3 —T1 + 1)
(0-test T1 lf) Time@T, Stk@T1, Rl@TQ, R2@T3 | {T1 = T2} — A
Time@T, Stjl @T, R1 @T, RQ@(T + T3 — Tl)
(0-test 1 else) TimeQT, St,QT, R1QTy, RoQT5 | {Th < To} —a
Time@T, Stj2 @T, Rl@(T + T2 — ,1—71)7 RQ@(T + T5 — Tl)
(0-test r» if) Time@T, Stk@Tl, R1@T2, RoQT5 | {T1 = T3} —A
Time@T, Stjl @T, Rl@(T +T5 — Tl)7 R>QT
(0-test 2 else) TI‘IHG@T7 Stk@Tl, R, @Tz7 R-QT3 ‘ {T1 < T3} —A
’TIAIDGC‘),T7 Sth @)’T7 R1@(T —+ T2 — T1), RQ@(T + T3 — T1)
(Jump) TIIHG@T, Stk @Tl, Rl @TQ, R2 @T3 — A
Time@T, Stj@T, Rl@(T +T5 — Tl), RQ@@(T + T3 — Tl)

It is easy to show that each action faithfully encodes the corresponding instruction in M. For

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 32

instance, consider the first action above encoding an (Add r1) instruction. At the precondition the
values stored in the registers 1 and r5 are, respectively, To — T} and T5 —T7. In the post-condition,
however, since the facts have to advance in time, the timestamp of the fact St;, denoting the next
instruction, is changed to the current global time 7'. Therefore, the timestamps of the facts 7y
and R have to be updated to 7'+ T> — 11 + 1 and T' + T5 — T}, where the value in the register
r1 is increased by one. Also notice that (0-test 7;) instructions are split into two actions: one for
the case when the test is satisfied ((0-test r; if) and the other for the case when the test is not
satisfied (0-test r; else). The goal is to reach a configuration that reaches the final state ag, which
is encoded by the fact St,,,.

For soundness, the only problem could be with the action that advances the global time.
However, since all actions above take into account the global time and recompute the timestamps
of R and R» so that they correspond to the correct values stored in the respective registers, the
system is sound. For completeness, one can show that if we do not advance time, the values of the
timestamps of R; and Ry correspond exactly to the values stored by the registers r; and rq, since
the timestamps of facts St, encoding instructions, are always zero. Hence, the encoding in our
system is complete.

Finally, notice that we do not require critical configurations, we use only one agent A, and no
actions above updates values with fresh ones. L]

Since the reachability problem is undecidable and in the proof we do not make use of any
critical states, all of the compliance problems mentioned in Section 2 are undecidable.

Corollary 6.1. Given a TLSTS with balanced actions that are linearly-time-advancing, then the
plan compliance and the system compliance problems are undecidable.

6.2. Relaxing Time Constraints

Instead of relaxing the timestamps of the facts in the post-condition, we now relax the form of
time constraints in the guard of actions and investigate the complexity of the reachability problem
for such systems. Recall that in our models, TLSTSes, time constraints are necessarily of the
form Ty o Ty + d, where o € {>, >, =, <, <} and d is a natural number. We relax this condition
by allowing actions to contain constraints of the form 77 o f(71,...,T,), where f is a linear
polynomial and 77, .. ., T;, are the timestamps appearing in the precondition of the corresponding
action. We call this type of actions linearly-constrained actions. We show that the reachability
problem for TLST'Ses with balanced and linearly constrained actions is also undecidable.

Theorem 6.2. Given a TLSTS with balanced and linearly-constrained actions, then the reacha-
bility problem is undecidable.

Proof. As in the proof of Theorem 6.1, we reduce the reachability problem for TLSTSes to
the termination of an arbitrary Minsky Machine M.

As in the proof of Theorem 6.1, the difference between the timestamps of R; (respectively,
Ry) and St will denote the value of the register r; (respectively, r2). We also use the auxiliary
predicate Auz, and a predicate Update] for each instruction v and ¢ € {1,2} together with the
Time predicate to encode the effects of the instructions of M, such as the instruction to add a

A Rewriting Framework and Logic for Activities Subject to Regulations 33

value to a register. The initial configuration consists of six facts with three copies of Auz.

7 = {St1@Q0, R, @0, R,@0, Auz@0, Auz@0, Auz@0, Time@0}.

where we assume w.l.o.g. that the values in both registers is zero. A goal configuration is any
configuration containing the facts G = {St,,QT}, AuzQT5, AuxQT5, Auz@QT3}.

Each of M’s instructions is encoded using a collection of auxiliary actions. Consider the
following instruction, -y, that adds the register r1:

(Add 1) insg: r1 = r1 + 1;g0to ins;

This instruction is encoded by the following four balanced and linearly-constrained actions:

(ACtiOll Y 1) Time@T, R1 @Tl, RQ @TQ, Stk @T3, Aum@T47 Auw@T5, A’Um@Te — A
TimeQT, R1QTy, RoQT5, St QT3, St,;QT, Update] QT, Updatey QT

(ACtiOll Y 2) TIIHG@T, R1@T1, RQ@TQ, St}c@T;g, Stj@T4, Update’ly@Tg, | {T = T4 + T1 — T3 + 1} —A
Time@T, Ry @T, RQ@TQ, Stk@Tg, Stj@T4, AuzQT

(ACtiOIl Y 3) Time@T, Rl @Tl, RQ@TQ, Stk@T'g,, Stj @T47 Update;’@Tg, | {T = T4 + T2 — Tg} —A
Time@T, Rl @T17 RQ@T, Stk@Tg, Stj@T4, AuxQT

(Action v 4) TimeQT', St,QT3, St;QTy, Aux@QTs, AuxQTs — 4
TimeQT, St,QT5, Aux@QT, AuxQT, Aux@QT

The first action is applicable only when the current state is k, specified by the fact St @73 in the
enabling configuration. It replaces the Auz facts with St;QT, Update] QT, Update3 QT'. The
first fact encodes the new state j. Since the timestamp of St; is T', whereas the values in the
registers are computed with respect to the timestamp 73 of Sty, namely 17 — T3 and 75 — T3, we
need to update the timestamps of R and R to be relative to T'. This is the purpose of the facts
Update] QT, Updatel QT and of the second and the third action. The second action updates the
timestamps of 21 when the current time is exactly T + T} — 15 + 1, that is, the previous value
stored in the register 71 plus 1 and relative to the timestamp of St;. The third action is similar
and corresponds to updating the timestamp of 2. Only, after the second and third action have
been applied can the fourth action be enabled and applied, as this requires two Aux facts in the
precondition . The fourth action then simply forgets the previous state, k, by replacing St;, with
Auzx.

The actions encoding other type of instructions are similar. We show below the encodings of the
instructions for Subtracting, instruction for the O-test for the register r; and the JUMP instruction.
The remaining actions for register r, are similar.

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 34

 is a Subtract instruction for r;:
(Action v 1) Time@T, R1@QTi, RoQT5, St,QT3, AuxQTy, Aux@Ts, AuxQTs | {T1 > T3} —a
TimeQT, R1QTy, RoQT5, St,QT3, St,;QT, Update] QT, Updatel QT

(Action Y 2) Time@T, Rl@Tl, RQ@TQ, Stk@Tg,, Stj@T47 Updatel’@T5 | {T = T4 + T1 — T3 — 1} — A
Time@T, Rl @T7 RQ@TQ, Stk@Tg, Stj@T4, AuxQT

(Action Y 3) Time@T, Rl@T1, RQ@TQ, Stk@Tg, Stj @T4, Updateg@Tg, | {T = T4 + T2 — T3} —A
Time@T, Rl @Tl, RQ@T, Stk@Tg, Stj@T4, Aum@T

(Action v 4) TimeQT, St;,QT3, St;QTy, Aux@QTs5, AurQTs — 4
TimeQT, St;,QT5, AuzQT, Aux@QT, Auz@QT

~ is a 0-test instruction for r:
(Action Yy 1 lf) Time@T, Rl@Tl, RQ@TQ, Stk @T37 Aua?@T4, A’U,ZE@T5, Aux@TG —)A| T1 = T3
TI’HIG@T7 R: @T, RQ@TQ, Stk @T37 Stjl @T7 AUI@T5, Update;’@T

(Action Y 1 else) Time@T, R1 @T1, RQ @TQ, Stk @Tg, AUJZ@T4, Aux@T5, Aux@Tﬁ —>A‘ T1 > T3
TimeQT, R1QTy, RoQT5, St,QT3, St;, QT, Update] QT, Updatey QT

(ACtiOl’l Y 2) Time@T, Rl @Tl, RQ@TQ, Stk@Tg,, Stji @T4, UpdateZ@T5 | {T = T4 =+ T1 — T3} — A
TI'Hle@T7 Rl @T7 R2 @TQ7 Stk @Tg7 Stji @T47 Aux@T

(Action v 3) Time@T, Rl@T1, RQ@TQ, Stk@ng, Stji @T4, Update;’@Tg, | {T =Ty +T5 — T3} —A
Time@T, Rl @Tl, RQ@T, Stk@T3, Stji @T4, AUI@T

(Action vy 4) Time@QT, St,@QT3, St;, QTy, AuzQTs, Aux@Ts — 4
TimeQT, St;,QT5, AuzQT, AuxQT, AuzQT

v is a Jump instruction:
(Action Y 1) Time@T, Rl @T1, R2 @TQ, Stk @T3, Aum@T4, A’LLZL'@T5, Au;c@TG — A
TimeQT, R1QTy, RoQT5, St,QT3, St,;QT, Update] QT, Updatel QT

(ACtiOIl Y 2) Time@T, R1 @Tl, RQ@TQ, Stk@T;g, Stj @T4, Update'f@Ts | {T = T4 + T1 — T3} — A
TimeQT, R1QT, R,QT5, St,QT5, St;QT,, AuzQT

(Action Y 3) Time@T, R1 @Tl, RQ@T2, Stk@Tg,, Stj @T47 Update;’@T5 | {T = T4 + T2 — Tg} — A
TI'Hle@T7 Rl @T17 RQ@T, Stk@Tg, Stj@T4, Aum@T

(Action 7y 4) TimeQT', St,,QT3, St;QTy, Aux@QTs5, AurQTs — 4
TimeQT, St;,QT5, AuxQT, AuzQT, AuzQT

The auxiliary facts Aux, Update] are necessary for the soundness and completeness of our
encoding. In particular, actions can only be applied in the following order:

Action v 1,n x Clock, Action «y i, m x Clock, Action v j, h x Clock, Action v 4

where n,m, k is a number of time advances, possibly zero, and {i, j} = {1, 2}, that is, either
Action 7 1 is applied before Action ~y 2 or vice-versa.

We can prove by induction on the size of plans that for a given Minsky machine M and its
encoding 7y as described above, then M reaches the final state ag if and only if 7, reaches a
goal configuration from the initial configuration Z.

Notice that we do not need any critical configurations.

A Rewriting Framework and Logic for Activities Subject to Regulations 35

Since the termination problem is undecidable, so is the reachability problem for TLSTSes with
balanced and linearly-constrained actions.]

We can conclude that since the reachability problem is undecidable and in the proof we do
not make use of any critical states, all the compliance problems mentioned in Section 2 are
undecidable for systems with balanced and linearly-constrained actions.

Corollary 6.2. Given a TLSTS with balanced actions that are linearly-constrained, then the plan
compliance and the system compliance problems are undecidable.

7. Related Work

The specification of regulations has been the topic of many recent works. In (BDMNO06; BMDS07;
LMS09), a temporal logic formalism for modeling collaborative systems is introduced. In this
framework, one relates the scope of privacy to the specific roles of agents in the system. For
instance, a patient’s test results, which normally should not be accessible to any agent, are
accessible to the agent that has the role of the patient’s doctor. We believe that our system
can be adapted or extended to accommodate such roles depending on the scenario considered.
In particular, it also seems possible to specify in our framework the health insurance scenario
discussed in (LMSO09). De Young et al. describe in (DGJ+10) the challenges of formally specifying
the temporal properties of regulations, such as HIPAA and GLPA. They extend the temporal
logic introduced in (BDMNO6) with fixed point operators, which seem to be required in order
to specify these regulations. A temporal logic to specify regulations, such as the FDA Code
of Federal Regulations (CFR), as properties of traces abstractly representing the operations of
an organization are given in (DJLS08). Notions of permissions and obligations are introduced
to deal with regulatory sentences as conditions or exceptions to others. An algorithm to check
conformance of audit logs to security and privacy policies expressed in a first-order logic with
restricted quantification is presented in (GJD11). In the case of incomplete logs a residual policy
is returned.

Temporal logics are suitable for specifying the temporal properties that need to be satisfied by
the traces of a system’s operation. Our approach starts with an executable specification of a system
using rewriting logic, combined with a mechanism to specify and check properties of executions.
Specifically, critical and goal configurations defined in the equational sublogic allow us to express
properties needed for generating plans for patient visits, and for monitoring clinical investigations
including FDA reporting regulations. Timestamps allow us to express both temporal properties
and timing constraints. Moreover, this approach allows us to use existing rewriting tools, such as
Maude (CDE+07), to implement our specifications and analyses.

The Petri nets (PNs) community has investigated many related problems involving time. In
particular, the coverability problem of PNs is related to our partial goal reachability problem for
TLSTSes of a simple form - without branching actions, or critical states, or fresh values (KRS09).
In (dFRA+00), de Frutos Escrig et al. show decidability results for the coverability problem of a
type of Timed PNs with discrete time. There seem to be connections between our timestamps of
facts and their time (age) associated to tokens as well as connections between our time constraints
and their time intervals labeling the arcs in these PNs. However, the complexity of their decision
procedures is extremely high, as compared with our upper bounds. Notice that branching actions

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 36

and critical states are not considered there. Despite these connections, we did not find any work
that captures exactly the model presented in this paper.

Real time systems differ from our setting since dense time domains, such as the real numbers,
are required, while in our intended applications, such as clinical investigations, discrete numbers
suffice. The models introduced in (AMO04; KOS98; OM07) deal with the specification of real time
systems and also explore the complexity of some problems. We give more detailed comparison
with Timed Automata in the following section.

Kanovich et al. in (KOS98) propose a linear logic based framework for specifying and model-
checking real time systems. In particular, they demonstrate fragments of linear logic for which
safety problems are PSPACE-complete. Interestingly, their examples are all balanced which is
in accordance to some of our conditions. However, as discussed in (DGP0S8), their model is
limited since one is not allowed to specify properties which involve different timestamps. In our
formalism, such properties can be specified using time constraints. In (OM07) conditions are
identified for which the problem of checking whether a system satisfies a property, specified
in linear temporal logic, is decidable. As their main application is for real time systems, they
also assume dense time domains, although discrete time domains can also be accommodated.
They identify non-trivial conditions on actions which allow one to abstract time and recover
completeness. We are currently investigating whether a simpler definition of balanced actions and
relative time constraints can provide more intuitive abstractions for systems with dense times.

7.1. Comparison with Timed Automata

Timed Automata (AD94) have been introduced as finite automata extended with real-time clocks
two decades ago and have since well proved their significance. They have been successfully used
for the verification of many systems involving real-time. It is impressive the amount of work and
results that have been achieved, which also include powerful implementations and tools.

Our Timed Local State Transition Systems offer another framework for timed systems which
enables us to formalize systems with explicit time including the regulations and the requirements
in collaborative systems with confidentiality. While there are some similarities between Timed
automata and our TLSTS formalism, as both involve time, there are also some important differ-
ences in both the constructs available in the language and also in the complexity results obtained,
including the proofs.

We highlight some differences:

— Instead of only considering the reachability problem, we deal with more general and com-
plicated planning problems, namely, the plan compliance and system compliance problems.
Thus solutions to the tasks we are dealing with should intertwine the positive features, that is
to reach a goal, with the negative features - only those solutions that do not go through any
critical states are acceptable;

— As we illustrated in the paper, the use of actions with non-deteministic effects (branching
actions) is also an important feature of TLST'Ses, allowing one to reason with a wider range of
systems and problems. It does not seem possible to model such actions using Timed Automata;

— We allow actions to create fresh values or nonces. This is an important feature of our model
enabling us to specify and verify security protocols (KBNS13; KBNS10) and other processes
that require unique identification such as our clinical trials example. Indeed, as our work is

A Rewriting Framework and Logic for Activities Subject to Regulations

37

closely related to security, the feature of fresh values is very much of interest to us since it is
essential in the field of security, going back to (HRU76). As actions can create a potentially
infinite number of distinct nonces, systems have in principal an infinite number of configura-
tions. Thus it is surprising that we can still guarantee PSPACE/EXPTIME-completeness for

our planning problems even though actions can create an unbounded number of nonces.

Traditionally, Timed Automata do not address nonces. More recently there have been some
solutions in the Timed Automata literature for handling nonces. For example, (CEHMO07)
formalize the generation of nonces using timed automata, but they need to assume that in

advance there is a fixed finite bound on the number of nonces.

These differences on the constructs available lead to differences in the complexity proofs. In
order to illustrate these differences, consider the following timed version of the classical Towers

of Hanoi puzzle, where each move takes one time unit.

Timed Towers of Hanoi Puzzle: Initially, at moment ¢, a stack of n disks a1, as, as, ...

> an

of increasing size arranged from the largest at the bottom to the smallest on top is placed on a

peg by. The other two pegs, b2 and b3, are empty.

The move is allowed only if it places a smaller disk a; on top of a larger disk a;, here i < j. The

processing time of the move is assumed to be 1 nanosecond.

The objective is to move, in the shortest time, the stack from the peg b; to the peg b3, in such a

way that no disk is ever placed on a smaller one.
To formalize the problem, we will use the following predicates:

(a) On(x,y) stands for “z is placed on top of y”
(b) Clear(xz) means that “nothing is on top of x”

Accordingly,

(c¢) On(x,y)@t stands for “z is placed on top of y at moment t”
(d) Clear(x)@t means that “x becomes available at moment t”

The initial configuration, W, can be formalized as:

Time@ty, Clear(a;)@Qty, On(ay, as)Qty, ...,0n(an, ant1)Q@ty
0n(an, b1)Q@tg, Clear(be)@tg, Clear(bs) @ty

The goal configuration, G, is formalized as:

TimeQt, Clear(a;)@Qt’, On(ay, az)@ty, ...,0n(ay, any1)Qt,
Clear(b;)@ry, Clear(by)@Qry, On(ay,, bs)Q1s

Consider a move action that transforms, in 1 nanosecond, a configuration of the form

®

(6)

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 38

Formally, this move action is axiomatized as a multiset rewriting rule in the form of a scheme:

TimeQt, Clear(x)Qty, On(z,y)Qts, Clear(z)Qts | {t1 <t, ta<t, t3<t}

. (N
— TimeQt, Clear(x)Q(t+1), Clear(y)Q(t+1), On(z, 2)@(t+1)
“At the present moment t, if x and z are still available, and x is placed on top of vy, then x and y become
available at the next moment t+1, and x will be placed on top of z by the next moment t+1.”

Here x, y, and z are distinct, x is some a;, ¥ is either by, or bo, or b3, or ax, =z is either by, or bo,
or bs, or a; such that 7 <j.

One can check that the number of the propositional instances (of the untimed variables, x, y, 2)
of the move action (7) is O(n?). Thus the size of the actual input to the planning/reachability
problem within this example is polynomial: O(n?), which results in that our general PSPACE
decision procedure developed for the actions with deterministic effects is running at most in the
polynomial space with respect to n.

As compared to the Timed Automata formalism (AMO04), any timed automaton representing
the system in this example has at least 2" —1 states. Therefore, given such an automaton as the
input, the general reachability decision procedure developed for timed automata will run at least
in polynomial space but polynomial with respect to 2.

This phenomena occurs because we consider first-order rules in our system, while Timed
Automata is given as a set of its states and transitions / arrows between the states extended with a
finite set of clocks of the same rate. Thus, when we try to instantiate a problem, such as the Timed
Towers of Hanoi shown above, using Timed Automata there is an explosion on the number of
states.

Finally, we point to an important difference on the formalization of the complexity proofs, in
particular, in the way in which configuration equivalence is established. One uses time-regions
to establish the equivalence relation between Timed Automata configurations. These are highly
multidimensional structures - the dimension is proportional to the number of clocks involved.
Their states can be conceived of as the result of the horizontal time cut, since all ingredients of
a state, such as clock values etc, are being taken just at the present moment. The result of the
transition depends only upon the present state - that is, given the present, the future does not
depend on the past.

The use of d-configurations to establish the equivalence of configurations is a one-dimensional
structure: a sequence of atomic events (that might have happened at different moments) ordered
in accordance with their time moments. The sequence is equipped with the sequence of adjusted
time distances between the events adjacent vertically in time. As such we are able to model
“history-sensitive” transitions, which are directly dealing not only with the present moment but
with the history of the corresponding events that happened in the past. This allows us to model
deadlines, for example.

We show that such a seemingly straightforward one-dimensional structure works perfectly
well even in the branching case of actions with non-deterministic effects. Since we allow any
number of nonce updates, an additional twist to the decidability problem is that we have to
cope with a potentially infinite number of nonces, which causes a potentially infinite number of
d-configurations, as well.

A Rewriting Framework and Logic for Activities Subject to Regulations 39

8. Conclusions and Future Work

This paper introduced a model based on multiset rewriting that can be used for specifying policies
and systems which mention time explicitly. We have shown that the planning problems for
balanced systems not containing branching actions are PSPACE-complete and that the same
problems for balanced systems possibly containing branching actions are EXPTIME-complete.
We have also shown that the restrictions on the form of actions and time constraint taken in the
definition of our model, TLST'S, are necessary to obtain the decidability of the reachability and
planning problems.

We also provided the semantics of TLSTSes as a linear logic with definitions theory. Our
adequacy result capitalized on the completeness of the focusing strategy for this logic.

There are many directions which we intend to follow. In (NBS+12), we describe how an
assistant can help the participants of clinical investigations to reduce mistakes and comply with
policies. We are extending our current implementation into a small scale prototype in Maude in
order to collect more feedback from the health care community. One main challenge, however, is
to specify procedures in a modular fashion. One might need to specify intermediate languages
that are closer to the terminology and format used in the specification of CIs, but that are still
precise enough to translate them into a TLST'S. We hope that the work described in (DJLS11)
may help us achieve this goal.

We would also like to extend our model to include dense times. This would allow us to specify
policies for which real-times are important. For instance, (APG+10) describes how one can reduce
human errors by connecting medical devices and configuring them according to some hospital
policies.

Another interesting problem to explore is checking whether a given plan, for example, a plan
embedded in a protocol, complies with regulations no matter how it is executed. Such checks
would help protocol design and review, and FDA audits as well as sponsors to monitor CIs and
detect mistakes as early as possible.

Finally, recently we have formalized Progressing Collaborative Systems that may create fresh
values (KBNS13), inspired by security protocols and administrative and business processes.
Such systems are efficient, i.e. the processes are always advancing and are completed in a
bounded number of transactions. This is reflected in the complexity of the planning problems
with progressing behavior. We are currently looking into extending the notion of progressing to
systems with time. We are also investigating sensible notions of timed intruder models. We believe
that one can apply the machinery introduced in this paper together with the notion of Bounded
Memory Protocols (KBNS14) to specify sensible security protocols that mention time.

Acknowledgments: We thank Anupam Datta, Nikhil Dinesh, Deepak Garg, Insup Lee, John
Mitchell, Grigori Mints, Oleg Sokolsky, and Martin Wirsing for helpful discussions. Nigam is
supported by the Brazilian Research Agency CNPq. Scedrov is supported in part by the AFOSR
MURI ”Science of Cyber Security: Modeling, Composition, and Measurement” as AFOSR Grant
No. FA9550-11-1-0137. Additional support for Scedrov from NSF Grant CNS-0830949 and from
ONR grant N00014-11-1-0555. During the work on the revised version Kanovich and Scedrov
were visiting the National Research University Higher School of Economics, Moscow. They
would like to thank Sergei O. Kuznetsov for providing a very pleasant environment for work.

M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. Talcott and R. Perovic 40

References

R. Alur and D. Dill. A Theory of Timed Automata. Theor. Comput. Sci., 126:183-235, 1994.

R. Alur and P. Madhusudan. Decision problems for timed automata: A survey. In SFM, pages 1-24, 2004.

J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and Computation,
2(3):297-347, 1992.

D. Arney, M. Pajic, J. M. Goldman, I. Lee, R. Mangharam, and O. Sokolsky. Toward patient safety in
closed-loop medical device systems. In Proceedings of the 1st ACM/IEEE International Conference on
Cyber-Physical Systems, ICCPS °10, pages 139-148, New York, NY, USA, 2010. ACM.

D. Baelde. A linear approach to the proof-theory of least and greatest fixed points. PhD thesis, Ecole
Polytechnique, Dec. 2008.

D. Baelde and D. Miller. Least and greatest fixed points in linear logic. In N. Dershowitz and A. Voronkov,
editors, International Conference on Logic for Programming and Automated Reasoning (LPAR), volume
4790, pages 92-106, 2007.

A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum. Privacy and contextual integrity: Framework and
applications. In IEEE Symposium on Security and Privacy, pages 184-198, 2006.

A. Barth, J. C. Mitchell, A. Datta, and S. Sundaram. Privacy and utility in business processes. In CSF, pages
279-294, 2007.

A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28:114-133, January 1981.

M. Clavel, F. Durén, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott. All About Maude: A
High-Performance Logical Framework. Springer, 2007.

R. Corin, S. Etalle, P. H. Hartel, and A. Mader. Timed analysis of security protocols. J. Comput. Secur.,
15(6):619-645, Dec. 2007.

D. de Frutos Escrig, V. V. Ruiz, and O. M. Alonso. Decidability of properties of timed-arc petri nets. In In
ICATPNOO, pages 187-206. Springer-Verlag, 2000.

H. DeYoung, D. Garg, L. Jia, D. K. Kaynar, and A. Datta. Experiences in the logical specification of the
HIPAA and GLBA privacy laws. In WPES, pages 73-82, 2010.

H. DeYoung, D. Garg, and F. Pfenning. An authorization logic with explicit time. In CSF, pages 133-145,
2008.

N. Dinesh, A. K. Joshi, I. Lee, and O. Sokolsky. Reasoning about conditions and exceptions to laws in
regulatory conformance checking. In DEON, pages 110-124, 2008.

N. Dinesh, A. K. Joshi, I. Lee, and O. Sokolsky. Permission to speak: A logic for access control and
conformance. J. Log. Algebr. Program., pages 50-74, 2011.

N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. Multiset rewriting and the complexity of bounded
security protocols. Journal of Computer Security, 12(2):247-311, 2004.

FDA. Code of federal regulations, Title 21, Chapter 1, Subchapter D, Part 312: Investigational new drug appli-
cation. Available at http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/
CFRSearch.cfm?CFRPart=312.

D. Garg, L. Jia, and A. Datta. Policy auditing over incomplete logs: Theory, implementation and applications.
In CCS’11,2011.

M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. On protection in operating systems. In SOSP ’75: Proceedings
of the fifth ACM symposium on Operating systems principles, pages 14-24, New York, NY, USA, 1975.
ACM.

J. S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear logic. Inf. Comput.,
110(2):327-365, 1994.

M. Kanovich, T. Ban Kirigin, V. Nigam, and A. Scedrov. Bounded memory Dolev-Yao adversaries in
collaborative systems. Inf. Comput., 238:233-261, 2014.

M. Kanovich, T. Ban Kirigin, V. Nigam, and A. Scedrov. Bounded memory Dolev-Yao adversaries in
collaborative systems. In FAST, 2010.

A Rewriting Framework and Logic for Activities Subject to Regulations 41

M. Kanovich, P. Rowe, and A. Scedrov. Policy compliance in collaborative systems. In CSF ’09: Proceedings
of the 2009 22nd IEEE Computer Security Foundations Symposium, pages 218-233, Washington, DC,
USA, 2009. IEEE Computer Society.

M. I. Kanovich, T. Ban Kirigin, V. Nigam, and A. Scedrov. Bounded memory protocols and progressing
collaborative systems. In J. Crampton, S. Jajodia, and K. Mayes, editors, ESORICS, volume 8134 of
Lecture Notes in Computer Science, pages 309-326. Springer, 2013.

M. I. Kanovich, T. Ban Kirigin, V. Nigam, and A. Scedrov. Bounded memory protocols. Computer Languages,
Systems & Structures, pages 40(3-4):137-154, 2014.

M. L. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C. L. Talcott, and R. Perovic. A rewriting framework
for activities subject to regulations. In A. Tiwari, editor, RTA, volume 15 of LIPIcs, pages 305-322.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

M. I. Kanovich, M. Okada, and A. Scedrov. Specifying real-time finite-state systems in linear logic. Electr.
Notes Theor. Comput. Sci., 16(1), 1998.

M. I. Kanovich, P. Rowe, and A. Scedrov. Collaborative planning with confidentiality. J. Autom. Reasoning,
46(3-4):389-421, 2011.

M. L. Kanovich and J. Vauzeilles. The classical ai planning problems in the mirror of horn linear logic:
semantics, expressibility, complexity. Mathematical Structures in Computer Science, 11(6):689-716,
2001.

P. E. Lam, J. C. Mitchell, and S. Sundaram. A formalization of HIPAA for a medical messaging system. In
S. Fischer-Hiibner, C. Lambrinoudakis, and G. Pernul, editors, TrustBus, volume 5695 of Lecture Notes in
Computer Science, pages 73—85. Springer, 2009.

R. Lanotte, A. Maggiolo-Schettini, and A. Troina. Reachability results for timed automata with unbounded
data structures. Acta Inf., 47(5-6):279-311, 2010.

R. McDowell and D. Miller. Cut-elimination for a logic with definitions and induction. Theoretical Computer
Science, 232:91-119, 2000.

J. Meseguer. Conditional Rewriting Logic as a unified model of concurrency. Theoretical Computer Science,
96(1):73-155, 1992.

M. Minsky. Recursive unsolvability of post’s problem of ’tag’ and other topics in the theory of turing
machines. Annals of Mathematics, 1961.

V. Nigam. On the complexity of linear authorization logics. In LICS, pages 511-520. IEEE, 2012.

V. Nigam, T. Ban Kirigin, A. Scedrov, C. Talcott, M. Kanovich, and R. Perovic. Towards an automated
assistant for clinical investigations. In Second ACM SIGHIT International Health Informatics Symposium,
2012.

V. Nigam and D. Miller. Algorithmic specifications in linear logic with subexponentials. pages 129-140,
2009.

V. Nigam and D. Miller. A framework for proof systems. J. Autom. Reasoning, 45(2):157-188, 2010.

P. C. Olveczky and J. Meseguer. Abstraction and completeness for Real-Time Maude. Electr. Notes Theor:
Comput. Sci., 176(4):5-27, 2007.

P. Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor, Eighth Annual Symposium on Logic
in Computer Science, pages 222-232. IEEE Computer Society Press, IEEE, June 1993.

